graph-structure-learning


Namegraph-structure-learning JSON
Version 0.1.2 PyPI version JSON
download
home_pageNone
SummaryExtracting graphs from signals on nodes
upload_time2024-11-11 13:33:19
maintainerNone
docs_urlNone
authorNone
requires_python>=3.10
licenseBSD-3-Clause
keywords machine learning graph network signal processing clustering time series
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            Graph learning
==============================

Collection of models for learning networks from signals.

Clustering methods follow the [sklearn](https://scikit-learn.org/stable/) API.

## Installation

Clone the git repository and install with pip:
```
git clone https://github.com/LTS4/graph-learning.git
cd graph-learning
pip install .
```

## References

### Base Models

#### Smooth learning (LogModel)

> V. Kalofolias, “How to Learn a Graph from Smooth Signals,” in Proceedings of the 19th International Conference on Artificial Intelligence and Statistics, May 2016, pp. 920–929. https://doi.org/10.48550/arXiv.1601.02513.

> V. Kalofolias and N. Perraudin, “Large Scale Graph Learning From Smooth Signals,” presented at the International Conference on Learning Representations, Sep. 2018. Available: https://openreview.net/forum?id=ryGkSo0qYm

Part of the code is ported to Python from the Matlab implementation from https://github.com/epfl-lts2/gspbox, published under GNU General Public License v3.0.

#### LGRMF

> H. E. Egilmez, E. Pavez, and A. Ortega, “Graph learning with Laplacian constraints: Modeling attractive Gaussian Markov random fields,” in 2016 50th Asilomar Conference on Signals, Systems and Computers, Nov. 2016, pp. 1470–1474. https://doi.org/10.1109/ACSSC.2016.7869621.

### Clustering models

#### GLMM

> H. P. Maretic and P. Frossard, “Graph Laplacian Mixture Model,” IEEE Transactions on Signal and Information Processing over Networks, vol. 6, pp. 261–270, 2020, https://doi.org/10.1109/TSIPN.2020.2983139.

#### k-Graphs

> H. Araghi, M. Sabbaqi, and M. Babaie–Zadeh, “$K$-Graphs: An Algorithm for Graph Signal Clustering and Multiple Graph Learning,” IEEE Signal Processing Letters, vol. 26, no. 10, pp. 1486–1490, Oct. 2019, https://doi.org/10.1109/LSP.2019.2936665.

### Temporal graph learning

#### TGFA

> K. Yamada, Y. Tanaka, and A. Ortega, “Time-Varying Graph Learning with Constraints on Graph Temporal Variation,” Jan. 10, 2020, https://doi.org/10.48550/arXiv.2001.03346.


#### Temporal Multiresolution Graph Learning (GraphDictHier)

> K. Yamada and Y. Tanaka, “Temporal Multiresolution Graph Learning,” IEEE Access, vol. 9, pp. 143734–143745, 2021, https://doi.org/10.1109/ACCESS.2021.3120994.


### Dictionary Models

#### Parametric Dictionary Learning (GraphDictSpectral)

> D. Thanou, D. I. Shuman, and P. Frossard, “Parametric dictionary learning for graph signals,” in 2013 IEEE Global Conference on Signal and Information Processing, Dec. 2013, pp. 487–490. https://doi.org/10.1109/GlobalSIP.2013.6736921.

#### Graph Dictionary Signal Model (GraphDictLog, GraphDictBase)

> W. Cappelletti and P. Frossard, “Graph-Dictionary Signal Model for Sparse Representations of Multivariate Data,” Nov. 08, 2024, [arXiv:2411.05729](https://arXiv.org/abs/2411.05729)

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "graph-structure-learning",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": null,
    "keywords": "machine learning, graph, network, signal processing, clustering, time series",
    "author": null,
    "author_email": "William Cappelletti <william.cappelletti@epfl.ch>",
    "download_url": "https://files.pythonhosted.org/packages/97/42/ffe97dd0fc47efeebd24bc6a2bcafcda28b24449e0f55ea89d4650f411e1/graph_structure_learning-0.1.2.tar.gz",
    "platform": null,
    "description": "Graph learning\n==============================\n\nCollection of models for learning networks from signals.\n\nClustering methods follow the [sklearn](https://scikit-learn.org/stable/) API.\n\n## Installation\n\nClone the git repository and install with pip:\n```\ngit clone https://github.com/LTS4/graph-learning.git\ncd graph-learning\npip install .\n```\n\n## References\n\n### Base Models\n\n#### Smooth learning (LogModel)\n\n> V. Kalofolias, \u201cHow to Learn a Graph from Smooth Signals,\u201d in Proceedings of the 19th International Conference on Artificial Intelligence and Statistics, May 2016, pp. 920\u2013929. https://doi.org/10.48550/arXiv.1601.02513.\n\n> V. Kalofolias and N. Perraudin, \u201cLarge Scale Graph Learning From Smooth Signals,\u201d presented at the International Conference on Learning Representations, Sep. 2018. Available: https://openreview.net/forum?id=ryGkSo0qYm\n\nPart of the code is ported to Python from the Matlab implementation from https://github.com/epfl-lts2/gspbox, published under GNU General Public License v3.0.\n\n#### LGRMF\n\n> H. E. Egilmez, E. Pavez, and A. Ortega, \u201cGraph learning with Laplacian constraints: Modeling attractive Gaussian Markov random fields,\u201d in 2016 50th Asilomar Conference on Signals, Systems and Computers, Nov. 2016, pp. 1470\u20131474. https://doi.org/10.1109/ACSSC.2016.7869621.\n\n### Clustering models\n\n#### GLMM\n\n> H. P. Maretic and P. Frossard, \u201cGraph Laplacian Mixture Model,\u201d IEEE Transactions on Signal and Information Processing over Networks, vol. 6, pp. 261\u2013270, 2020, https://doi.org/10.1109/TSIPN.2020.2983139.\n\n#### k-Graphs\n\n> H. Araghi, M. Sabbaqi, and M. Babaie\u2013Zadeh, \u201c$K$-Graphs: An Algorithm for Graph Signal Clustering and Multiple Graph Learning,\u201d IEEE Signal Processing Letters, vol. 26, no. 10, pp. 1486\u20131490, Oct. 2019, https://doi.org/10.1109/LSP.2019.2936665.\n\n### Temporal graph learning\n\n#### TGFA\n\n> K. Yamada, Y. Tanaka, and A. Ortega, \u201cTime-Varying Graph Learning with Constraints on Graph Temporal Variation,\u201d Jan. 10, 2020, https://doi.org/10.48550/arXiv.2001.03346.\n\n\n#### Temporal Multiresolution Graph Learning (GraphDictHier)\n\n> K. Yamada and Y. Tanaka, \u201cTemporal Multiresolution Graph Learning,\u201d IEEE Access, vol. 9, pp. 143734\u2013143745, 2021, https://doi.org/10.1109/ACCESS.2021.3120994.\n\n\n### Dictionary Models\n\n#### Parametric Dictionary Learning (GraphDictSpectral)\n\n> D. Thanou, D. I. Shuman, and P. Frossard, \u201cParametric dictionary learning for graph signals,\u201d in 2013 IEEE Global Conference on Signal and Information Processing, Dec. 2013, pp. 487\u2013490. https://doi.org/10.1109/GlobalSIP.2013.6736921.\n\n#### Graph Dictionary Signal Model (GraphDictLog, GraphDictBase)\n\n> W. Cappelletti and P. Frossard, \u201cGraph-Dictionary Signal Model for Sparse Representations of Multivariate Data,\u201d Nov. 08, 2024, [arXiv:2411.05729](https://arXiv.org/abs/2411.05729)\n",
    "bugtrack_url": null,
    "license": "BSD-3-Clause",
    "summary": "Extracting graphs from signals on nodes",
    "version": "0.1.2",
    "project_urls": {
        "Homepage": "https://github.com/LTS4/graph-learning",
        "Issues": "https://github.com/LTS4/graph-learning/issues"
    },
    "split_keywords": [
        "machine learning",
        " graph",
        " network",
        " signal processing",
        " clustering",
        " time series"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "580afd7442bac24d91dcbd119230c5d9bb4e3c9e251a4e1925be766595d20509",
                "md5": "02648d03ef8385005809c94e2ee2f7c4",
                "sha256": "3db91d9484f7892bdae8bd5d5f126b3ce0df805132a1bb6cb6c3726e5b7d8ca1"
            },
            "downloads": -1,
            "filename": "graph_structure_learning-0.1.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "02648d03ef8385005809c94e2ee2f7c4",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10",
            "size": 41698,
            "upload_time": "2024-11-11T13:33:18",
            "upload_time_iso_8601": "2024-11-11T13:33:18.393544Z",
            "url": "https://files.pythonhosted.org/packages/58/0a/fd7442bac24d91dcbd119230c5d9bb4e3c9e251a4e1925be766595d20509/graph_structure_learning-0.1.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "9742ffe97dd0fc47efeebd24bc6a2bcafcda28b24449e0f55ea89d4650f411e1",
                "md5": "7689af1ae7f21e3bdd633261963dfaae",
                "sha256": "d8acecb695e13d9047e994330121f94f422f805de38dcda1880afa80a622a906"
            },
            "downloads": -1,
            "filename": "graph_structure_learning-0.1.2.tar.gz",
            "has_sig": false,
            "md5_digest": "7689af1ae7f21e3bdd633261963dfaae",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10",
            "size": 34481,
            "upload_time": "2024-11-11T13:33:19",
            "upload_time_iso_8601": "2024-11-11T13:33:19.540928Z",
            "url": "https://files.pythonhosted.org/packages/97/42/ffe97dd0fc47efeebd24bc6a2bcafcda28b24449e0f55ea89d4650f411e1/graph_structure_learning-0.1.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-11 13:33:19",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "LTS4",
    "github_project": "graph-learning",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "graph-structure-learning"
}
        
Elapsed time: 0.45365s