<p align="center">
<a href="https://graphbook.ai">
<img src="assets/graphbook-hf-banner.png" alt="Logo" width=512>
</a>
<h1 align="center">Graphbook Hugging Face</h1>
<p align="center">
Build No Code Hugging Face AI Pipelines
</p>
</p>
You can build efficient DAG workflows or AI pipelines without any code. This is a Graphbook plugin that lets you drag and drop Hugging Face models and datasets onto Graphbook workflows. This plugin contains a web panel for searching and drag-and-dropping models and datasets from [Huggingface Hub](https://huggingface.co/) onto their graphbook workflows.
<img src="assets/example-hf-pipeline.png" alt="Example Pipeline with Hugging Face" with=1024>
## Packaged Nodes
Graphbook Hugging Face contains the following nodes:
* `TransformersPipeline` step for model usage from transformers package
* `HuggingfaceDataset` step for dataset usage from the datasets package
* And numerous `Post Processing/*` steps for post processing of model outputs
## Getting started
1. `pip install graphbook_huggingface graphbook transformers datasets`
1. `graphbook --config hf.config.yaml`
Raw data
{
"_id": null,
"home_page": "https://graphbook.ai",
"name": "graphbook_huggingface",
"maintainer": null,
"docs_url": null,
"requires_python": "<4.0,>=3.9",
"maintainer_email": null,
"keywords": "huggingface, ml, workflow, pipelines, pytorch, data science, machine learning, ai",
"author": "Richard Franklin",
"author_email": "rsamf@graphbook.ai",
"download_url": "https://files.pythonhosted.org/packages/84/c9/52251f27adfd0479b0e49925309a6970967acce4e3366e14f6204282a060/graphbook_huggingface-0.0.5.tar.gz",
"platform": null,
"description": "<p align=\"center\">\n <a href=\"https://graphbook.ai\">\n <img src=\"assets/graphbook-hf-banner.png\" alt=\"Logo\" width=512>\n </a>\n\n <h1 align=\"center\">Graphbook Hugging Face</h1>\n\n <p align=\"center\">\n Build No Code Hugging Face AI Pipelines\n </p>\n</p>\n\nYou can build efficient DAG workflows or AI pipelines without any code. This is a Graphbook plugin that lets you drag and drop Hugging Face models and datasets onto Graphbook workflows. This plugin contains a web panel for searching and drag-and-dropping models and datasets from [Huggingface Hub](https://huggingface.co/) onto their graphbook workflows.\n\n<img src=\"assets/example-hf-pipeline.png\" alt=\"Example Pipeline with Hugging Face\" with=1024>\n\n## Packaged Nodes\n\nGraphbook Hugging Face contains the following nodes:\n\n* `TransformersPipeline` step for model usage from transformers package\n* `HuggingfaceDataset` step for dataset usage from the datasets package\n* And numerous `Post Processing/*` steps for post processing of model outputs\n\n## Getting started\n1. `pip install graphbook_huggingface graphbook transformers datasets`\n1. `graphbook --config hf.config.yaml`\n\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Graphbook Hugging Face Plugin for no-code Hugging Face AI pipelines",
"version": "0.0.5",
"project_urls": {
"Documentation": "https://docs.graphbook.ai",
"Homepage": "https://graphbook.ai",
"Repository": "https://github.com/graphbookai/graphbook"
},
"split_keywords": [
"huggingface",
" ml",
" workflow",
" pipelines",
" pytorch",
" data science",
" machine learning",
" ai"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "21fa426ac79f75a48e809d7862b932fa48cf497da74590d5f95cf2e81e397db1",
"md5": "77c8472d7022725febb4b48a422c89be",
"sha256": "1712cde03dba3935385a158919560e0eb4498e06885c98fb9aa57cdb26d5c0b8"
},
"downloads": -1,
"filename": "graphbook_huggingface-0.0.5-py3-none-any.whl",
"has_sig": false,
"md5_digest": "77c8472d7022725febb4b48a422c89be",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<4.0,>=3.9",
"size": 20657,
"upload_time": "2025-01-01T20:44:32",
"upload_time_iso_8601": "2025-01-01T20:44:32.052574Z",
"url": "https://files.pythonhosted.org/packages/21/fa/426ac79f75a48e809d7862b932fa48cf497da74590d5f95cf2e81e397db1/graphbook_huggingface-0.0.5-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "84c952251f27adfd0479b0e49925309a6970967acce4e3366e14f6204282a060",
"md5": "cc45cc3489cfdc88ee4603e794ad9e26",
"sha256": "fbc29c4ed9aed8831e0a3d0a40486c19000694ca407196d3afeb280cd6ffcdf1"
},
"downloads": -1,
"filename": "graphbook_huggingface-0.0.5.tar.gz",
"has_sig": false,
"md5_digest": "cc45cc3489cfdc88ee4603e794ad9e26",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<4.0,>=3.9",
"size": 19154,
"upload_time": "2025-01-01T20:44:34",
"upload_time_iso_8601": "2025-01-01T20:44:34.233370Z",
"url": "https://files.pythonhosted.org/packages/84/c9/52251f27adfd0479b0e49925309a6970967acce4e3366e14f6204282a060/graphbook_huggingface-0.0.5.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-01-01 20:44:34",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "graphbookai",
"github_project": "graphbook",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "graphbook_huggingface"
}