Name | graphfleet JSON |
Version |
0.6.0
JSON |
| download |
home_page | None |
Summary | A Python library for building and querying knowledge graphs using GraphRAG |
upload_time | 2024-12-21 17:16:11 |
maintainer | None |
docs_url | None |
author | Qredence |
requires_python | <3.13,>=3.11 |
license | None |
keywords |
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# GraphFleet
A Python library for building and querying knowledge graphs using GraphRAG.
## Installation
```bash
pip install graphfleet
```
## Features
- Document indexing with customizable chunking
- Knowledge graph construction using GraphRAG
- Natural language querying
- Azure OpenAI integration
- FastAPI-based API endpoints
## Quick Start
```python
import asyncio
from pathlib import Path
from graphfleet.core import GraphFleet
async def main():
# Initialize GraphFleet
gf = GraphFleet(project_dir=Path("./data"))
# Add a document
doc_path = Path("example.txt")
await gf.add_document(doc_path)
# Search the knowledge base
results = await gf.search("What are the main challenges in AI?")
print(results)
if __name__ == "__main__":
asyncio.run(main())
```
## Configuration
Set the following environment variables in your `.env` file:
```bash
GRAPHRAG_API_KEY=your_api_key
GRAPHRAG_API_BASE=your_api_base
GRAPHRAG_API_VERSION=your_api_version
GRAPHRAG_DEPLOYMENT_NAME=your_deployment_name
GRAPHRAG_EMBEDDING_KEY=your_embedding_key
GRAPHRAG_EMBEDDING_ENDPOINT=your_embedding_endpoint
GRAPHRAG_EMBEDDING_DEPLOYMENT_NAME=your_embedding_deployment_name
```
## Documentation
For more examples and detailed documentation, see the `examples` directory.
## License
MIT License
Raw data
{
"_id": null,
"home_page": null,
"name": "graphfleet",
"maintainer": null,
"docs_url": null,
"requires_python": "<3.13,>=3.11",
"maintainer_email": null,
"keywords": null,
"author": "Qredence",
"author_email": null,
"download_url": "https://files.pythonhosted.org/packages/92/8c/4303593ad2e474776e522374b8d6799fcadc1fdcce2d59e76aa70a7665e3/graphfleet-0.6.0.tar.gz",
"platform": null,
"description": "# GraphFleet\n\nA Python library for building and querying knowledge graphs using GraphRAG.\n\n## Installation\n\n```bash\npip install graphfleet\n```\n\n## Features\n\n- Document indexing with customizable chunking\n- Knowledge graph construction using GraphRAG\n- Natural language querying\n- Azure OpenAI integration\n- FastAPI-based API endpoints\n\n## Quick Start\n\n```python\nimport asyncio\nfrom pathlib import Path\nfrom graphfleet.core import GraphFleet\n\nasync def main():\n # Initialize GraphFleet\n gf = GraphFleet(project_dir=Path(\"./data\"))\n \n # Add a document\n doc_path = Path(\"example.txt\")\n await gf.add_document(doc_path)\n \n # Search the knowledge base\n results = await gf.search(\"What are the main challenges in AI?\")\n print(results)\n\nif __name__ == \"__main__\":\n asyncio.run(main())\n```\n\n## Configuration\n\nSet the following environment variables in your `.env` file:\n\n```bash\nGRAPHRAG_API_KEY=your_api_key\nGRAPHRAG_API_BASE=your_api_base\nGRAPHRAG_API_VERSION=your_api_version\nGRAPHRAG_DEPLOYMENT_NAME=your_deployment_name\nGRAPHRAG_EMBEDDING_KEY=your_embedding_key\nGRAPHRAG_EMBEDDING_ENDPOINT=your_embedding_endpoint\nGRAPHRAG_EMBEDDING_DEPLOYMENT_NAME=your_embedding_deployment_name\n```\n\n## Documentation\n\nFor more examples and detailed documentation, see the `examples` directory.\n\n## License\n\nMIT License\n",
"bugtrack_url": null,
"license": null,
"summary": "A Python library for building and querying knowledge graphs using GraphRAG",
"version": "0.6.0",
"project_urls": {
"repository": "https://github.com/Qredence/graphfleet"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "70d658f350841534b0311505f21784542c6f3e141f3386af19e839fef0d006a4",
"md5": "729b9ff3e8cf678662f1520ac9963fc9",
"sha256": "9a6aadc48101d65280e28a74d3c251702457706150298086935be6c433749b1d"
},
"downloads": -1,
"filename": "graphfleet-0.6.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "729b9ff3e8cf678662f1520ac9963fc9",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<3.13,>=3.11",
"size": 8953,
"upload_time": "2024-12-21T17:16:09",
"upload_time_iso_8601": "2024-12-21T17:16:09.753103Z",
"url": "https://files.pythonhosted.org/packages/70/d6/58f350841534b0311505f21784542c6f3e141f3386af19e839fef0d006a4/graphfleet-0.6.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "928c4303593ad2e474776e522374b8d6799fcadc1fdcce2d59e76aa70a7665e3",
"md5": "d886177e9d9f288739e99427d5070193",
"sha256": "82811690999d458d86354badd05dd548c0be12157f1f780e8222e466b926223d"
},
"downloads": -1,
"filename": "graphfleet-0.6.0.tar.gz",
"has_sig": false,
"md5_digest": "d886177e9d9f288739e99427d5070193",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<3.13,>=3.11",
"size": 8114,
"upload_time": "2024-12-21T17:16:11",
"upload_time_iso_8601": "2024-12-21T17:16:11.865778Z",
"url": "https://files.pythonhosted.org/packages/92/8c/4303593ad2e474776e522374b8d6799fcadc1fdcce2d59e76aa70a7665e3/graphfleet-0.6.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-12-21 17:16:11",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "Qredence",
"github_project": "graphfleet",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "graphfleet"
}