graphistry


Namegraphistry JSON
Version 0.35.2 PyPI version JSON
download
home_pagehttps://github.com/graphistry/pygraphistry
SummaryA visual graph analytics library for extracting, transforming, displaying, and sharing big graphs with end-to-end GPU acceleration
upload_time2024-12-13 21:05:09
maintainerNone
docs_urlhttps://pythonhosted.org/graphistry/
authorThe Graphistry Team
requires_python>=3.8
licenseBSD
keywords cugraph cudf cuml dask databricks gfql gpu graph graphviz graphx gremlin igraph jupyter neo4j neptune network networkx notebook opensearch pandas plot rapids rdf splunk spark sql tinkerpop umap visualization torch dgl gnn
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # PyGraphistry: Leverage the power of graphs & GPUs to visualize, analyze, and scale your data

![Build Status](https://github.com/graphistry/pygraphistry/workflows/CI%20Tests/badge.svg)
[![CodeQL](https://github.com/graphistry/pygraphistry/workflows/CodeQL/badge.svg)](https://github.com/graphistry/pygraphistry/actions?query=workflow%3ACodeQL)
[![Documentation Status](https://readthedocs.org/projects/pygraphistry/badge/?version=latest)](https://pygraphistry.readthedocs.io/en/latest/)
[![Latest Version](https://img.shields.io/pypi/v/graphistry.svg)](https://pypi.python.org/pypi/graphistry)
[![Latest Version](https://img.shields.io/pypi/pyversions/graphistry.svg)](https://pypi.python.org/pypi/graphistry)
[![License](https://img.shields.io/pypi/l/graphistry.svg)](https://pypi.python.org/pypi/graphistry)
![PyPI - Downloads](https://img.shields.io/pypi/dm/graphistry)

[![Uptime Robot status](https://img.shields.io/uptimerobot/status/m787548531-e9c7b7508fc76fea927e2313?label=hub.graphistry.com)](https://status.graphistry.com/) [<img src="https://img.shields.io/badge/slack-Graphistry%20chat-orange.svg?logo=slack">](https://join.slack.com/t/graphistry-community/shared_invite/zt-53ik36w2-fpP0Ibjbk7IJuVFIRSnr6g)
[![Twitter Follow](https://img.shields.io/twitter/follow/graphistry)](https://twitter.com/graphistry)


<table style="width:100%;">
  <tr valign="top">
    <td align="center"><a href="https://hub.graphistry.com/graph/graph.html?dataset=Facebook&splashAfter=true" target="_blank"><img src="https://i.imgur.com/z8SIh2E.png" title="Click to open."></a>
    <a href="https://hub.graphistry.com/graph/graph.html?dataset=Facebook&splashAfter=true" target="_blank">Demo: Interactive visualization of 80,000+ Facebook friendships</a> (<a href="http://snap.stanford.edu" target="_blank">source data</a></em>)
    </td>
  </tr>
</table>

PyGraphistry is an open source Python library for data scientists and developers to leverage the power of graph visualization, analytics, AI, including with native GPU acceleration:

* [**Python dataframe-native graph processing:**](https://pygraphistry.readthedocs.io/en/latest/10min.html) Quickly ingest & prepare data in many formats, shapes, and scales as graphs. Use tools like Pandas, Spark, [RAPIDS (GPU)](https://www.rapids.ai), and [Apache Arrow](https://arrow.apache.org/).

* [**Integrations:**](https://pygraphistry.readthedocs.io/en/latest/plugins.html) Plug into [Amazon Neptune](https://docs.aws.amazon.com/neptune/latest/userguide/visualization-graphistry.html) ([notebook](https://pygraphistry.readthedocs.io/en/latest/demos/demos_databases_apis/neptune/neptune_cypher_viz_using_bolt.html)), [cuGraph](https://pygraphistry.readthedocs.io/en/latest/demos/demos_databases_apis/gpu_rapids/cugraph.html), [Databricks](https://www.databricks.com/solutions/accelerators/incident-investigation-using-graphistry) ([notebook](https://pygraphistry.readthedocs.io/en/latest/demos/demos_databases_apis/databricks_pyspark/graphistry-notebook-dashboard.html)), [graphviz](https://pygraphistry.readthedocs.io/en/latest/demos/demos_databases_apis/graphviz/graphviz.html), [Neo4j](https://pygraphistry.readthedocs.io/en/latest/demos/demos_databases_apis/neo4j/official/graphistry_bolt_tutorial_public.html), [Splunk](https://www.splunk.com/en_us/blog/security/supercharge-cybersecurity-investigations-with-splunk-and-graphistry-a-powerful-combination-for-interactive-graph-exploration.html) ([notebook](https://pygraphistry.readthedocs.io/en/latest/demos/demos_databases_apis/splunk/splunk_demo_public.html)), [TigerGraph](https://pygraphistry.readthedocs.io/en/latest/demos/demos_databases_apis/tigergraph/tigergraph_pygraphistry_bindings.html), and many more in the [notebook data provider demo gallery](https://pygraphistry.readthedocs.io/en/latest/notebooks/plugins.connectors.html).


* [**Prototype locally and deploy remotely:**](https://www.graphistry.com/get-started) Prototype from notebooks like Jupyter and Databricks using local CPUs & GPUs, and then power production dashboards & pipelines with Graphistry Hub and your own self-hosted servers.

* [**Query graphs with GFQL:**](https://pygraphistry.readthedocs.io/en/latest/gfql/index.html) Use GFQL, the first dataframe-native graph query language, to ask relationship questions that are difficult for tabular tools and without requiring a database.

* [**graphistry[ai]:**](https://pygraphistry.readthedocs.io/en/latest/gfql/combo.html#) Call streamlined graph ML & AI methods to benefit from clustering, UMAP embeddings, graph neural networks, automatic feature engineering, and more.

* [**Visualize & explore large graphs:**](https://pygraphistry.readthedocs.io/en/latest/visualization/10min.html#) In just a few minutes, create stunning interactive visualizations with millions of edges and many point-and-click built-ins like drilldowns, timebars, and filtering. When ready, customize with Python, JavaScript, and REST APIs.

* [**Columnar & GPU acceleration:**](https://pygraphistry.readthedocs.io/en/latest/performance.html) CPU-mode ingestion and wrangling is fast due to native use of Apache Arrow and columnar analytics, and the optional RAPIDS-based GPU mode delivers 100X+ speedups.


From global 10 banks, manufacturers, news agencies, and government agencies, to startups, game companies, scientists, biotechs, and NGOs, many teams are tackling their graph workloads with Graphistry.



## Gallery


The [notebook demo gallery](https://pygraphistry.readthedocs.io/en/latest/demos/for_analysis.html) shares many more live visualizations, demos, and integration examples

<table>
    <tr valign="top">
        <td width="33%" align="center"><a href="https://hub.graphistry.com/graph/graph.html?dataset=Twitter&splashAfter=true" target="_blank">Twitter Botnet<br><img width="266" src="https://i.imgur.com/qm5MCqS.jpg"></a></td>
        <td width="33%" align="center">Edit Wars on Wikipedia<br><a href="https://i.imgur.com/074zFve.png" target="_blank"><img width="266" src="https://i.imgur.com/074zFve.png"></a><em>(<a href="https://snap.stanford.edu" target="_blank">data</a></em>)</td>
        <td width="33%" align="center"><a href="https://hub.graphistry.com/graph/graph.html?dataset=bitC&splashAfter=true" target="_blank">100,000 Bitcoin Transactions<br><img width="266" height="266" src="https://i.imgur.com/axIkjfd.png"></a></td>
    </tr>
    <tr valign="top">
        <td width="33%" align="center">Port Scan Attack<br><a href="http://i.imgur.com/vKUDySw.png" target="_blank"><img width="266" src="http://i.imgur.com/vKUDySw.png"></a></td>
        <td width="33%" align="center"><a href="http://hub.graphistry.com/graph/graph.html?dataset=PyGraphistry/M9RL4PQFSF&usertag=github&info=true&static=true&contentKey=Biogrid_Github_Demo&play=3000&center=false&menu=true&goLive=false&left=-2.58e+4&right=4.35e+4&top=-1.72e+4&bottom=2.16e+4&legend={%22title%22:%22%3Ch3%3EBioGRID%20Repository%20of%20Protein%20Interactions%3C/h3%3E%22,%22subtitle%22:%22%3Cp%3EEach%20color%20represents%20an%20organism.%20Humans%20are%20in%20light%20blue.%3C/p%3E%22,%22nodes%22:%22Proteins/Genes%22,%22edges%22:%22Interactions%20reported%20in%20scientific%20publications%22}" target="_blank">Protein Interactions <br><img width="266" src="http://i.imgur.com/nrUHLFz.png" target="_blank"></a><em>(<a href="http://thebiogrid.org" target="_blank">data</a>)</em></td>
        <td width="33%" align="center"><a href="http://hub.graphistry.com/graph/graph.html?&dataset=PyGraphistry/PC7D53HHS5&info=true&static=true&contentKey=SocioPlt_Github_Demo&play=3000&center=false&menu=true&goLive=false&left=-236&right=265&top=-145&bottom=134&usertag=github&legend=%7B%22nodes%22%3A%20%22%3Cspan%20style%3D%5C%22color%3A%23a6cee3%3B%5C%22%3ELanguages%3C/span%3E%20/%20%3Cspan%20style%3D%5C%22color%3Argb%28106%2C%2061%2C%20154%29%3B%5C%22%3EStatements%3C/span%3E%22%2C%20%22edges%22%3A%20%22Strong%20Correlations%22%2C%20%22subtitle%22%3A%20%22%3Cp%3EFor%20more%20information%2C%20check%20out%20the%20%3Ca%20target%3D%5C%22_blank%5C%22%20href%3D%5C%22https%3A//lmeyerov.github.io/projects/socioplt/viz/index.html%5C%22%3ESocio-PLT%3C/a%3E%20project.%20Make%20your%20own%20visualizations%20with%20%3Ca%20target%3D%5C%22_blank%5C%22%20href%3D%5C%22https%3A//github.com/graphistry/pygraphistry%5C%22%3EPyGraphistry%3C/a%3E.%3C/p%3E%22%2C%20%22title%22%3A%20%22%3Ch3%3ECorrelation%20Between%20Statements%20about%20Programming%20Languages%3C/h3%3E%22%7D" target="_blank">Programming Languages<br><img width="266" src="http://i.imgur.com/0T0EKmD.png"></a><em>(<a href="http://lmeyerov.github.io/projects/socioplt/viz/index.html" target="_blank">data</a>)</em></td>
    </tr>
</table>



## Install

Common configurations:

* **Minimal core**

  Includes: The GFQL dataframe-native graph query language, built-in layouts, Graphistry visualization server client

  ```python
  pip install graphistry
  ```

  Does not include `graphistry[ai]`, plugins

* **No dependencies and user-level**

  ```python
  pip install --no-deps --user graphistry
  ```

* **GPU acceleration** - Optional

  Local GPU: Install [RAPIDS](https://www.rapids.ai) and/or deploy a GPU-ready [Graphistry server](https://www.graphistry.com/get-started)
  
  Remote GPU: Use the [remote endpoints](https://www.graphistry.com/blog/graphistry-2-41-3).

For further options, see the [installation guides](https://pygraphistry.readthedocs.io/en/latest/install/index.html)


## Visualization quickstart

Quickly go from raw data to a styled and interactive Graphistry graph visualization:

```python
import graphistry
import pandas as pd

# Raw data as Pandas CPU dataframes, cuDF GPU dataframes, Spark, ...
df = pd.DataFrame({
    'src': ['Alice', 'Bob', 'Carol'],
    'dst': ['Bob', 'Carol', 'Alice'],
    'friendship': [0.3, 0.95, 0.8]
})

# Bind
g1 = graphistry.edges(df, 'src', 'dst')

# Override styling defaults
g1_styled = g1.encode_edge_color('friendship', ['blue', 'red'], as_continuous=True)

# Connect: Free GPU accounts and self-hosting @ graphistry.com/get-started
graphistry.register(api=3, username='your_username', password='your_password')

# Upload for GPU server visualization session
g1_styled.plot()
```

Explore [10 Minutes to Graphistry Visualization](https://pygraphistry.readthedocs.io/en/latest/visualization/10min.html) for more visualization examples and options


## PyGraphistry[AI] & GFQL quickstart - CPU & GPU

**CPU graph pipeline** combining graph ML, AI, mining, and visualization:

```python
from graphistry import n, e, e_forward, e_reverse

# Graph analytics
g2 = g1.compute_igraph('pagerank')
assert 'pagerank' in g2._nodes.columns

# Graph ML/AI
g3 = g2.umap()
assert ('x' in g3._nodes.columns) and ('y' in g3._nodes.columns)

# Graph querying with GFQL
g4 = g3.chain([
    n(query='pagerank > 0.1'), e_forward(), n(query='pagerank > 0.1')
])
assert (g4._nodes.pagerank > 0.1).all()

# Upload for GPU server visualization session
g4.plot()
```

The **automatic GPU modes** require almost no code changes:

```python
import cudf
from graphistry import n, e, e_forward, e_reverse

# Modified -- Rebind data as a GPU dataframe and swap in a GPU plugin call
g1_gpu = g1.edges(cudf.from_pandas(df))
g2 = g1_gpu.compute_cugraph('pagerank')

# Unmodified -- Automatic GPU mode for all ML, AI, GFQL queries, & visualization APIs
g3 = g2.umap()
g4 = g3.chain([
    n(query='pagerank > 0.1'), e_forward(), n(query='pagerank > 0.1')
])
g4.plot()
```

Explore [10 Minutes to PyGraphistry](https://pygraphistry.readthedocs.io/en/latest/10min.html) for a wider variety of graph processing.


## PyGraphistry documentation

* [Main PyGraphistry documentation](https://pygraphistry.readthedocs.io/en/latest/)
* 10 Minutes to: [PyGraphistry](https://pygraphistry.readthedocs.io/en/latest/10min.html), [Visualization](https://pygraphistry.readthedocs.io/en/latest/visualization/10min.html), [GFQL](https://pygraphistry.readthedocs.io/en/latest/gfql/about.html)
* Get started: [Install](https://pygraphistry.readthedocs.io/en/latest/install/index.html), [UI Guide](https://hub.graphistry.com/docs/ui/index/), [Notebooks](https://pygraphistry.readthedocs.io/en/latest/demos/for_analysis.html)
* Performance: [PyGraphistry CPU+GPU](https://pygraphistry.readthedocs.io/en/latest/performance.html) & [GFQL CPU+GPU](https://pygraphistry.readthedocs.io/en/latest/gfql/performance.html)
* API References
    - [PyGraphistry API Reference](https://pygraphistry.readthedocs.io/en/latest/api/index.html): [Visualization & Compute](https://pygraphistry.readthedocs.io/en/latest/visualization/index.html), [PyGraphistry Cheatsheet](https://pygraphistry.readthedocs.io/en/latest/cheatsheet.html)
    - [GFQL Documentation](https://pygraphistry.readthedocs.io/en/latest/gfql/index.html):  [GFQL Cheatsheet](https://pygraphistry.readthedocs.io/en/latest/gfql/quick.html) and [GFQL Operator Cheatsheet](https://pygraphistry.readthedocs.io/en/latest/gfql/predicates/quick.html)
    - [Plugins](https://pygraphistry.readthedocs.io/en/latest/plugins.html): Databricks, Splunk, Neptune, Neo4j, RAPIDS, and more
    - Web: [iframe](https://hub.graphistry.com/docs/api/1/rest/url/#urloptions),  [JavaScript](https://hub.graphistry.com/static/js-docs/index.html?path=/docs/introduction--docs), [REST](https://hub.graphistry.com/docs/api/1/rest/auth/)

## Graphistry ecosystem

- **Graphistry server:**
  - Launch - [Graphistry Hub, Graphistry cloud marketplaces, and self-hosting](https://www.graphistry.com/get-started)
  - Self-hosting: [Administration (including Docker)](https://github.com/graphistry/graphistry-cli) & [Kubernetes](https://github.com/graphistry/graphistry-helm)

- **Graphistry client APIs:**
  - Web: [iframe](https://hub.graphistry.com/docs/api/1/rest/url/#urloptions), [JavaScript](https://hub.graphistry.com/static/js-docs/index.html?path=/docs/introduction--docs), [REST](https://hub.graphistry.com/docs/api/1/rest/auth/)
  - [PyGraphistry](https://pygraphistry.readthedocs.io/en/latest/index.html)
  - [Graphistry for Microsoft PowerBI](https://hub.graphistry.com/docs/powerbi/pbi/)

- **Additional projects**:
  - [Louie.ai](https://louie.ai/): GenAI-native notebooks & dashboards to talk to your databases & Graphistry
  - [graph-app-kit](https://github.com/graphistry/graph-app-kit): Streamlit Python dashboards with batteries-include graph packages
  - [cu-cat](https://chat.openai.com/chat): Automatic GPU feature engineering


## Community and support

- [Blog](https://www.graphistry.com/blog) for tutorials, case studies, and updates
- [Slack](https://join.slack.com/t/graphistry-community/shared_invite/zt-53ik36w2-fpP0Ibjbk7IJuVFIRSnr6g): Join the Graphistry Community Slack for discussions and support
- [Twitter](https://twitter.com/graphistry) & [LinkedIn](https://www.linkedin.com/company/graphistry): Follow for updates
- [GitHub Issues](https://github.com/graphistry/pygraphistry/issues) open source support
- [Graphistry ZenDesk](https://graphistry.zendesk.com/) dedicated enterprise support

## Contribute

See [CONTRIBUTE](https://pygraphistry.readthedocs.io/en/latest/CONTRIBUTE.html) and [DEVELOP](https://pygraphistry.readthedocs.io/en/latest/DEVELOP.html) for participating in PyGraphistry development, or reach out to our team


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/graphistry/pygraphistry",
    "name": "graphistry",
    "maintainer": null,
    "docs_url": "https://pythonhosted.org/graphistry/",
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "cugraph, cudf, cuml, dask, Databricks, GFQL, GPU, Graph, graphviz, GraphX, Gremlin, igraph, Jupyter, Neo4j, Neptune, Network, NetworkX, Notebook, OpenSearch, Pandas, Plot, RAPIDS, RDF, Splunk, Spark, SQL, Tinkerpop, UMAP, Visualization, Torch, DGL, GNN",
    "author": "The Graphistry Team",
    "author_email": "pygraphistry@graphistry.com",
    "download_url": "https://files.pythonhosted.org/packages/a1/ef/f53e49be8535ff490531e8d3bacd9c93874bd4dc40426d2cfccfaf229078/graphistry-0.35.2.tar.gz",
    "platform": "any",
    "description": "# PyGraphistry: Leverage the power of graphs & GPUs to visualize, analyze, and scale your data\n\n![Build Status](https://github.com/graphistry/pygraphistry/workflows/CI%20Tests/badge.svg)\n[![CodeQL](https://github.com/graphistry/pygraphistry/workflows/CodeQL/badge.svg)](https://github.com/graphistry/pygraphistry/actions?query=workflow%3ACodeQL)\n[![Documentation Status](https://readthedocs.org/projects/pygraphistry/badge/?version=latest)](https://pygraphistry.readthedocs.io/en/latest/)\n[![Latest Version](https://img.shields.io/pypi/v/graphistry.svg)](https://pypi.python.org/pypi/graphistry)\n[![Latest Version](https://img.shields.io/pypi/pyversions/graphistry.svg)](https://pypi.python.org/pypi/graphistry)\n[![License](https://img.shields.io/pypi/l/graphistry.svg)](https://pypi.python.org/pypi/graphistry)\n![PyPI - Downloads](https://img.shields.io/pypi/dm/graphistry)\n\n[![Uptime Robot status](https://img.shields.io/uptimerobot/status/m787548531-e9c7b7508fc76fea927e2313?label=hub.graphistry.com)](https://status.graphistry.com/) [<img src=\"https://img.shields.io/badge/slack-Graphistry%20chat-orange.svg?logo=slack\">](https://join.slack.com/t/graphistry-community/shared_invite/zt-53ik36w2-fpP0Ibjbk7IJuVFIRSnr6g)\n[![Twitter Follow](https://img.shields.io/twitter/follow/graphistry)](https://twitter.com/graphistry)\n\n\n<table style=\"width:100%;\">\n  <tr valign=\"top\">\n    <td align=\"center\"><a href=\"https://hub.graphistry.com/graph/graph.html?dataset=Facebook&splashAfter=true\" target=\"_blank\"><img src=\"https://i.imgur.com/z8SIh2E.png\" title=\"Click to open.\"></a>\n    <a href=\"https://hub.graphistry.com/graph/graph.html?dataset=Facebook&splashAfter=true\" target=\"_blank\">Demo: Interactive visualization of 80,000+ Facebook friendships</a> (<a href=\"http://snap.stanford.edu\" target=\"_blank\">source data</a></em>)\n    </td>\n  </tr>\n</table>\n\nPyGraphistry is an open source Python library for data scientists and developers to leverage the power of graph visualization, analytics, AI, including with native GPU acceleration:\n\n* [**Python dataframe-native graph processing:**](https://pygraphistry.readthedocs.io/en/latest/10min.html) Quickly ingest & prepare data in many formats, shapes, and scales as graphs. Use tools like Pandas, Spark, [RAPIDS (GPU)](https://www.rapids.ai), and [Apache Arrow](https://arrow.apache.org/).\n\n* [**Integrations:**](https://pygraphistry.readthedocs.io/en/latest/plugins.html) Plug into [Amazon Neptune](https://docs.aws.amazon.com/neptune/latest/userguide/visualization-graphistry.html) ([notebook](https://pygraphistry.readthedocs.io/en/latest/demos/demos_databases_apis/neptune/neptune_cypher_viz_using_bolt.html)), [cuGraph](https://pygraphistry.readthedocs.io/en/latest/demos/demos_databases_apis/gpu_rapids/cugraph.html), [Databricks](https://www.databricks.com/solutions/accelerators/incident-investigation-using-graphistry) ([notebook](https://pygraphistry.readthedocs.io/en/latest/demos/demos_databases_apis/databricks_pyspark/graphistry-notebook-dashboard.html)), [graphviz](https://pygraphistry.readthedocs.io/en/latest/demos/demos_databases_apis/graphviz/graphviz.html), [Neo4j](https://pygraphistry.readthedocs.io/en/latest/demos/demos_databases_apis/neo4j/official/graphistry_bolt_tutorial_public.html), [Splunk](https://www.splunk.com/en_us/blog/security/supercharge-cybersecurity-investigations-with-splunk-and-graphistry-a-powerful-combination-for-interactive-graph-exploration.html) ([notebook](https://pygraphistry.readthedocs.io/en/latest/demos/demos_databases_apis/splunk/splunk_demo_public.html)), [TigerGraph](https://pygraphistry.readthedocs.io/en/latest/demos/demos_databases_apis/tigergraph/tigergraph_pygraphistry_bindings.html), and many more in the [notebook data provider demo gallery](https://pygraphistry.readthedocs.io/en/latest/notebooks/plugins.connectors.html).\n\n\n* [**Prototype locally and deploy remotely:**](https://www.graphistry.com/get-started) Prototype from notebooks like Jupyter and Databricks using local CPUs & GPUs, and then power production dashboards & pipelines with Graphistry Hub and your own self-hosted servers.\n\n* [**Query graphs with GFQL:**](https://pygraphistry.readthedocs.io/en/latest/gfql/index.html) Use GFQL, the first dataframe-native graph query language, to ask relationship questions that are difficult for tabular tools and without requiring a database.\n\n* [**graphistry[ai]:**](https://pygraphistry.readthedocs.io/en/latest/gfql/combo.html#) Call streamlined graph ML & AI methods to benefit from clustering, UMAP embeddings, graph neural networks, automatic feature engineering, and more.\n\n* [**Visualize & explore large graphs:**](https://pygraphistry.readthedocs.io/en/latest/visualization/10min.html#) In just a few minutes, create stunning interactive visualizations with millions of edges and many point-and-click built-ins like drilldowns, timebars, and filtering. When ready, customize with Python, JavaScript, and REST APIs.\n\n* [**Columnar & GPU acceleration:**](https://pygraphistry.readthedocs.io/en/latest/performance.html) CPU-mode ingestion and wrangling is fast due to native use of Apache Arrow and columnar analytics, and the optional RAPIDS-based GPU mode delivers 100X+ speedups.\n\n\nFrom global 10 banks, manufacturers, news agencies, and government agencies, to startups, game companies, scientists, biotechs, and NGOs, many teams are tackling their graph workloads with Graphistry.\n\n\n\n## Gallery\n\n\nThe [notebook demo gallery](https://pygraphistry.readthedocs.io/en/latest/demos/for_analysis.html) shares many more live visualizations, demos, and integration examples\n\n<table>\n    <tr valign=\"top\">\n        <td width=\"33%\" align=\"center\"><a href=\"https://hub.graphistry.com/graph/graph.html?dataset=Twitter&splashAfter=true\" target=\"_blank\">Twitter Botnet<br><img width=\"266\" src=\"https://i.imgur.com/qm5MCqS.jpg\"></a></td>\n        <td width=\"33%\" align=\"center\">Edit Wars on Wikipedia<br><a href=\"https://i.imgur.com/074zFve.png\" target=\"_blank\"><img width=\"266\" src=\"https://i.imgur.com/074zFve.png\"></a><em>(<a href=\"https://snap.stanford.edu\" target=\"_blank\">data</a></em>)</td>\n        <td width=\"33%\" align=\"center\"><a href=\"https://hub.graphistry.com/graph/graph.html?dataset=bitC&splashAfter=true\" target=\"_blank\">100,000 Bitcoin Transactions<br><img width=\"266\" height=\"266\" src=\"https://i.imgur.com/axIkjfd.png\"></a></td>\n    </tr>\n    <tr valign=\"top\">\n        <td width=\"33%\" align=\"center\">Port Scan Attack<br><a href=\"http://i.imgur.com/vKUDySw.png\" target=\"_blank\"><img width=\"266\" src=\"http://i.imgur.com/vKUDySw.png\"></a></td>\n        <td width=\"33%\" align=\"center\"><a href=\"http://hub.graphistry.com/graph/graph.html?dataset=PyGraphistry/M9RL4PQFSF&usertag=github&info=true&static=true&contentKey=Biogrid_Github_Demo&play=3000&center=false&menu=true&goLive=false&left=-2.58e+4&right=4.35e+4&top=-1.72e+4&bottom=2.16e+4&legend={%22title%22:%22%3Ch3%3EBioGRID%20Repository%20of%20Protein%20Interactions%3C/h3%3E%22,%22subtitle%22:%22%3Cp%3EEach%20color%20represents%20an%20organism.%20Humans%20are%20in%20light%20blue.%3C/p%3E%22,%22nodes%22:%22Proteins/Genes%22,%22edges%22:%22Interactions%20reported%20in%20scientific%20publications%22}\" target=\"_blank\">Protein Interactions <br><img width=\"266\" src=\"http://i.imgur.com/nrUHLFz.png\" target=\"_blank\"></a><em>(<a href=\"http://thebiogrid.org\" target=\"_blank\">data</a>)</em></td>\n        <td width=\"33%\" align=\"center\"><a href=\"http://hub.graphistry.com/graph/graph.html?&dataset=PyGraphistry/PC7D53HHS5&info=true&static=true&contentKey=SocioPlt_Github_Demo&play=3000&center=false&menu=true&goLive=false&left=-236&right=265&top=-145&bottom=134&usertag=github&legend=%7B%22nodes%22%3A%20%22%3Cspan%20style%3D%5C%22color%3A%23a6cee3%3B%5C%22%3ELanguages%3C/span%3E%20/%20%3Cspan%20style%3D%5C%22color%3Argb%28106%2C%2061%2C%20154%29%3B%5C%22%3EStatements%3C/span%3E%22%2C%20%22edges%22%3A%20%22Strong%20Correlations%22%2C%20%22subtitle%22%3A%20%22%3Cp%3EFor%20more%20information%2C%20check%20out%20the%20%3Ca%20target%3D%5C%22_blank%5C%22%20href%3D%5C%22https%3A//lmeyerov.github.io/projects/socioplt/viz/index.html%5C%22%3ESocio-PLT%3C/a%3E%20project.%20Make%20your%20own%20visualizations%20with%20%3Ca%20target%3D%5C%22_blank%5C%22%20href%3D%5C%22https%3A//github.com/graphistry/pygraphistry%5C%22%3EPyGraphistry%3C/a%3E.%3C/p%3E%22%2C%20%22title%22%3A%20%22%3Ch3%3ECorrelation%20Between%20Statements%20about%20Programming%20Languages%3C/h3%3E%22%7D\" target=\"_blank\">Programming Languages<br><img width=\"266\" src=\"http://i.imgur.com/0T0EKmD.png\"></a><em>(<a href=\"http://lmeyerov.github.io/projects/socioplt/viz/index.html\" target=\"_blank\">data</a>)</em></td>\n    </tr>\n</table>\n\n\n\n## Install\n\nCommon configurations:\n\n* **Minimal core**\n\n  Includes: The GFQL dataframe-native graph query language, built-in layouts, Graphistry visualization server client\n\n  ```python\n  pip install graphistry\n  ```\n\n  Does not include `graphistry[ai]`, plugins\n\n* **No dependencies and user-level**\n\n  ```python\n  pip install --no-deps --user graphistry\n  ```\n\n* **GPU acceleration** - Optional\n\n  Local GPU: Install [RAPIDS](https://www.rapids.ai) and/or deploy a GPU-ready [Graphistry server](https://www.graphistry.com/get-started)\n  \n  Remote GPU: Use the [remote endpoints](https://www.graphistry.com/blog/graphistry-2-41-3).\n\nFor further options, see the [installation guides](https://pygraphistry.readthedocs.io/en/latest/install/index.html)\n\n\n## Visualization quickstart\n\nQuickly go from raw data to a styled and interactive Graphistry graph visualization:\n\n```python\nimport graphistry\nimport pandas as pd\n\n# Raw data as Pandas CPU dataframes, cuDF GPU dataframes, Spark, ...\ndf = pd.DataFrame({\n    'src': ['Alice', 'Bob', 'Carol'],\n    'dst': ['Bob', 'Carol', 'Alice'],\n    'friendship': [0.3, 0.95, 0.8]\n})\n\n# Bind\ng1 = graphistry.edges(df, 'src', 'dst')\n\n# Override styling defaults\ng1_styled = g1.encode_edge_color('friendship', ['blue', 'red'], as_continuous=True)\n\n# Connect: Free GPU accounts and self-hosting @ graphistry.com/get-started\ngraphistry.register(api=3, username='your_username', password='your_password')\n\n# Upload for GPU server visualization session\ng1_styled.plot()\n```\n\nExplore [10 Minutes to Graphistry Visualization](https://pygraphistry.readthedocs.io/en/latest/visualization/10min.html) for more visualization examples and options\n\n\n## PyGraphistry[AI] & GFQL quickstart - CPU & GPU\n\n**CPU graph pipeline** combining graph ML, AI, mining, and visualization:\n\n```python\nfrom graphistry import n, e, e_forward, e_reverse\n\n# Graph analytics\ng2 = g1.compute_igraph('pagerank')\nassert 'pagerank' in g2._nodes.columns\n\n# Graph ML/AI\ng3 = g2.umap()\nassert ('x' in g3._nodes.columns) and ('y' in g3._nodes.columns)\n\n# Graph querying with GFQL\ng4 = g3.chain([\n    n(query='pagerank > 0.1'), e_forward(), n(query='pagerank > 0.1')\n])\nassert (g4._nodes.pagerank > 0.1).all()\n\n# Upload for GPU server visualization session\ng4.plot()\n```\n\nThe **automatic GPU modes** require almost no code changes:\n\n```python\nimport cudf\nfrom graphistry import n, e, e_forward, e_reverse\n\n# Modified -- Rebind data as a GPU dataframe and swap in a GPU plugin call\ng1_gpu = g1.edges(cudf.from_pandas(df))\ng2 = g1_gpu.compute_cugraph('pagerank')\n\n# Unmodified -- Automatic GPU mode for all ML, AI, GFQL queries, & visualization APIs\ng3 = g2.umap()\ng4 = g3.chain([\n    n(query='pagerank > 0.1'), e_forward(), n(query='pagerank > 0.1')\n])\ng4.plot()\n```\n\nExplore [10 Minutes to PyGraphistry](https://pygraphistry.readthedocs.io/en/latest/10min.html) for a wider variety of graph processing.\n\n\n## PyGraphistry documentation\n\n* [Main PyGraphistry documentation](https://pygraphistry.readthedocs.io/en/latest/)\n* 10 Minutes to: [PyGraphistry](https://pygraphistry.readthedocs.io/en/latest/10min.html), [Visualization](https://pygraphistry.readthedocs.io/en/latest/visualization/10min.html), [GFQL](https://pygraphistry.readthedocs.io/en/latest/gfql/about.html)\n* Get started: [Install](https://pygraphistry.readthedocs.io/en/latest/install/index.html), [UI Guide](https://hub.graphistry.com/docs/ui/index/), [Notebooks](https://pygraphistry.readthedocs.io/en/latest/demos/for_analysis.html)\n* Performance: [PyGraphistry CPU+GPU](https://pygraphistry.readthedocs.io/en/latest/performance.html) & [GFQL CPU+GPU](https://pygraphistry.readthedocs.io/en/latest/gfql/performance.html)\n* API References\n    - [PyGraphistry API Reference](https://pygraphistry.readthedocs.io/en/latest/api/index.html): [Visualization & Compute](https://pygraphistry.readthedocs.io/en/latest/visualization/index.html), [PyGraphistry Cheatsheet](https://pygraphistry.readthedocs.io/en/latest/cheatsheet.html)\n    - [GFQL Documentation](https://pygraphistry.readthedocs.io/en/latest/gfql/index.html):  [GFQL Cheatsheet](https://pygraphistry.readthedocs.io/en/latest/gfql/quick.html) and [GFQL Operator Cheatsheet](https://pygraphistry.readthedocs.io/en/latest/gfql/predicates/quick.html)\n    - [Plugins](https://pygraphistry.readthedocs.io/en/latest/plugins.html): Databricks, Splunk, Neptune, Neo4j, RAPIDS, and more\n    - Web: [iframe](https://hub.graphistry.com/docs/api/1/rest/url/#urloptions),  [JavaScript](https://hub.graphistry.com/static/js-docs/index.html?path=/docs/introduction--docs), [REST](https://hub.graphistry.com/docs/api/1/rest/auth/)\n\n## Graphistry ecosystem\n\n- **Graphistry server:**\n  - Launch - [Graphistry Hub, Graphistry cloud marketplaces, and self-hosting](https://www.graphistry.com/get-started)\n  - Self-hosting: [Administration (including Docker)](https://github.com/graphistry/graphistry-cli) & [Kubernetes](https://github.com/graphistry/graphistry-helm)\n\n- **Graphistry client APIs:**\n  - Web: [iframe](https://hub.graphistry.com/docs/api/1/rest/url/#urloptions), [JavaScript](https://hub.graphistry.com/static/js-docs/index.html?path=/docs/introduction--docs), [REST](https://hub.graphistry.com/docs/api/1/rest/auth/)\n  - [PyGraphistry](https://pygraphistry.readthedocs.io/en/latest/index.html)\n  - [Graphistry for Microsoft PowerBI](https://hub.graphistry.com/docs/powerbi/pbi/)\n\n- **Additional projects**:\n  - [Louie.ai](https://louie.ai/): GenAI-native notebooks & dashboards to talk to your databases & Graphistry\n  - [graph-app-kit](https://github.com/graphistry/graph-app-kit): Streamlit Python dashboards with batteries-include graph packages\n  - [cu-cat](https://chat.openai.com/chat): Automatic GPU feature engineering\n\n\n## Community and support\n\n- [Blog](https://www.graphistry.com/blog) for tutorials, case studies, and updates\n- [Slack](https://join.slack.com/t/graphistry-community/shared_invite/zt-53ik36w2-fpP0Ibjbk7IJuVFIRSnr6g): Join the Graphistry Community Slack for discussions and support\n- [Twitter](https://twitter.com/graphistry) & [LinkedIn](https://www.linkedin.com/company/graphistry): Follow for updates\n- [GitHub Issues](https://github.com/graphistry/pygraphistry/issues) open source support\n- [Graphistry ZenDesk](https://graphistry.zendesk.com/) dedicated enterprise support\n\n## Contribute\n\nSee [CONTRIBUTE](https://pygraphistry.readthedocs.io/en/latest/CONTRIBUTE.html) and [DEVELOP](https://pygraphistry.readthedocs.io/en/latest/DEVELOP.html) for participating in PyGraphistry development, or reach out to our team\n\n",
    "bugtrack_url": null,
    "license": "BSD",
    "summary": "A visual graph analytics library for extracting, transforming, displaying, and sharing big graphs with end-to-end GPU acceleration",
    "version": "0.35.2",
    "project_urls": {
        "Download": "https://pypi.python.org/pypi/graphistry/",
        "Homepage": "https://github.com/graphistry/pygraphistry"
    },
    "split_keywords": [
        "cugraph",
        " cudf",
        " cuml",
        " dask",
        " databricks",
        " gfql",
        " gpu",
        " graph",
        " graphviz",
        " graphx",
        " gremlin",
        " igraph",
        " jupyter",
        " neo4j",
        " neptune",
        " network",
        " networkx",
        " notebook",
        " opensearch",
        " pandas",
        " plot",
        " rapids",
        " rdf",
        " splunk",
        " spark",
        " sql",
        " tinkerpop",
        " umap",
        " visualization",
        " torch",
        " dgl",
        " gnn"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "b5af318fb9622ac1132ace22c9462e60c16c30186fb2c1fffe428266a9f3c3e4",
                "md5": "59c5cf40e464c06803b9ae80d8049e7c",
                "sha256": "e13d2796951fcbfbfdc4192dd5f739f787fe7dc11adee5727f5abccf9aa5434c"
            },
            "downloads": -1,
            "filename": "graphistry-0.35.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "59c5cf40e464c06803b9ae80d8049e7c",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 279152,
            "upload_time": "2024-12-13T21:05:06",
            "upload_time_iso_8601": "2024-12-13T21:05:06.050355Z",
            "url": "https://files.pythonhosted.org/packages/b5/af/318fb9622ac1132ace22c9462e60c16c30186fb2c1fffe428266a9f3c3e4/graphistry-0.35.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "a1eff53e49be8535ff490531e8d3bacd9c93874bd4dc40426d2cfccfaf229078",
                "md5": "93cd0710078b127c659a9c4d58f9cb14",
                "sha256": "68592f090dc9742372cbbc33a73d64068326edd03ecdbdbaba38b77407270244"
            },
            "downloads": -1,
            "filename": "graphistry-0.35.2.tar.gz",
            "has_sig": false,
            "md5_digest": "93cd0710078b127c659a9c4d58f9cb14",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 265153,
            "upload_time": "2024-12-13T21:05:09",
            "upload_time_iso_8601": "2024-12-13T21:05:09.279241Z",
            "url": "https://files.pythonhosted.org/packages/a1/ef/f53e49be8535ff490531e8d3bacd9c93874bd4dc40426d2cfccfaf229078/graphistry-0.35.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-12-13 21:05:09",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "graphistry",
    "github_project": "pygraphistry",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "graphistry"
}
        
Elapsed time: 0.41752s