graphomaly


Namegraphomaly JSON
Version 0.3.2 PyPI version JSON
download
home_pagehttps://gitlab.com/unibuc/graphomaly/graphomaly
SummaryAnomaly detection in graphs modeling financial transactions and computer networks.
upload_time2025-07-13 23:34:56
maintainerNone
docs_urlNone
authorPaul Irofti, Ștefania Budulan, Bogdan Dumitrescu, Andra Băltoiu, Nicolae Cleju, Andrei Iulian Hîji
requires_python>=3.6
licenseNone
keywords anomaly detection graphs financial transactions computer networks abnormal behavior machine learning security
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Graphomaly

Automatic tool for Anti-Money Laundering (AML) and  detecting abnormal behavior in computer networks. Find abnormal data in graph and network structures.

Official package documentation [here](https://unibuc.gitlab.io/graphomaly/graphomaly/).

This work was initially supported by the [Graphomaly Research Grant](http://graphomaly.upb.ro/) and later partially supported by the [Netalert Research Grant](https://cs.unibuc.ro/~pirofti/netalert.html).

## Installation and setup
Install via pip from the [PyPi repository](https://pypi.org/project/graphomaly/):
```
pip install graphomaly
```

or for the latest changes not yet in the official release:
```
pip install git+https://gitlab.com/unibuc/graphomaly/graphomaly
```

Install via docker from the [DockerHub repository](https://hub.docker.com/r/pirofti/graphomaly)
```
docker pull pirofti/graphomaly
```
For using the GPU pull the dedicated image:
```
docker pull pirofti/graphomaly:latest_gpu
```

## Usage

The package follows the [sklearn](https://scikit-learn.org/) API and can be included in your projects via
```
from graphomaly.estimator import GraphomalyEstimator
```
which will provide you with a standard scikit-learn estimator that you can use in your pipeline.

For configuration and tweaks please consult the YAML file for now until documentation matures.

## Development and testing

First clone the repository and change directory to the root of your fresh checkout.

#### 0. Install Prerequisites
Install PyPA’s [build](https://packaging.python.org/en/latest/key_projects/#build):
```
python3 -m pip install --upgrade build
```

#### 1. Build
Inside the Graphomaly directory
```
python -m build
```

#### 2. Virtual Environment

Create a virtual environment with Python:
```
python -m venv venv
```

Activate the environment:
```
source venv/bin/activate
```

For Windows execute instead:
```
venv\Scripts\activate
```

#### 3. Install
Inside the virtual environment execute:
```
pip install dist/graphomaly-*.whl
```

## Running unit tests

First create the results directory:
```
mkdir -p tests/results/synthetic
```

Run the initial test on synthetic data to make sure things installed ok:
```
cd tests && python test_synthetic
```

Then run the other unit tests by hand as above or via `pytest`:

```
pytest  # add -v for verbose, add -s to print(...) to console from tests
```

            

Raw data

            {
    "_id": null,
    "home_page": "https://gitlab.com/unibuc/graphomaly/graphomaly",
    "name": "graphomaly",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": null,
    "keywords": "anomaly detection, graphs, financial transactions, computer networks, abnormal behavior, machine learning, security",
    "author": "Paul Irofti, \u0218tefania Budulan, Bogdan Dumitrescu, Andra B\u0103ltoiu, Nicolae Cleju, Andrei Iulian H\u00eeji",
    "author_email": "graphomaly@fmi.unibuc.ro",
    "download_url": "https://files.pythonhosted.org/packages/e7/61/97da753bd2fb3d531cf7b3c9f58889178f25b55b79e2c2679a374d73a55e/graphomaly-0.3.2.tar.gz",
    "platform": null,
    "description": "# Graphomaly\n\nAutomatic tool for Anti-Money Laundering (AML) and  detecting abnormal behavior in computer networks. Find abnormal data in graph and network structures.\n\nOfficial package documentation [here](https://unibuc.gitlab.io/graphomaly/graphomaly/).\n\nThis work was initially supported by the [Graphomaly Research Grant](http://graphomaly.upb.ro/) and later partially supported by the [Netalert Research Grant](https://cs.unibuc.ro/~pirofti/netalert.html).\n\n## Installation and setup\nInstall via pip from the [PyPi repository](https://pypi.org/project/graphomaly/):\n```\npip install graphomaly\n```\n\nor for the latest changes not yet in the official release:\n```\npip install git+https://gitlab.com/unibuc/graphomaly/graphomaly\n```\n\nInstall via docker from the [DockerHub repository](https://hub.docker.com/r/pirofti/graphomaly)\n```\ndocker pull pirofti/graphomaly\n```\nFor using the GPU pull the dedicated image:\n```\ndocker pull pirofti/graphomaly:latest_gpu\n```\n\n## Usage\n\nThe package follows the [sklearn](https://scikit-learn.org/) API and can be included in your projects via\n```\nfrom graphomaly.estimator import GraphomalyEstimator\n```\nwhich will provide you with a standard scikit-learn estimator that you can use in your pipeline.\n\nFor configuration and tweaks please consult the YAML file for now until documentation matures.\n\n## Development and testing\n\nFirst clone the repository and change directory to the root of your fresh checkout.\n\n#### 0. Install Prerequisites\nInstall PyPA\u2019s [build](https://packaging.python.org/en/latest/key_projects/#build):\n```\npython3 -m pip install --upgrade build\n```\n\n#### 1. Build\nInside the Graphomaly directory\n```\npython -m build\n```\n\n#### 2. Virtual Environment\n\nCreate a virtual environment with Python:\n```\npython -m venv venv\n```\n\nActivate the environment:\n```\nsource venv/bin/activate\n```\n\nFor Windows execute instead:\n```\nvenv\\Scripts\\activate\n```\n\n#### 3. Install\nInside the virtual environment execute:\n```\npip install dist/graphomaly-*.whl\n```\n\n## Running unit tests\n\nFirst create the results directory:\n```\nmkdir -p tests/results/synthetic\n```\n\nRun the initial test on synthetic data to make sure things installed ok:\n```\ncd tests && python test_synthetic\n```\n\nThen run the other unit tests by hand as above or via `pytest`:\n\n```\npytest  # add -v for verbose, add -s to print(...) to console from tests\n```\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Anomaly detection in graphs modeling financial transactions and computer networks.",
    "version": "0.3.2",
    "project_urls": {
        "Bug Tracker": "https://gitlab.com/unibuc/graphomaly/graphomaly/-/issues",
        "Homepage": "https://gitlab.com/unibuc/graphomaly/graphomaly"
    },
    "split_keywords": [
        "anomaly detection",
        " graphs",
        " financial transactions",
        " computer networks",
        " abnormal behavior",
        " machine learning",
        " security"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "c770546e7700e329442de40f242e29a521e7c37367ea5b6faf4a58efb37f28f1",
                "md5": "363e575987102082a0c9710a8636c79f",
                "sha256": "1e4e8be2112b7b02d2158103ad17799696ed19857c7a58d54bfbb897d3b2dab7"
            },
            "downloads": -1,
            "filename": "graphomaly-0.3.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "363e575987102082a0c9710a8636c79f",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6",
            "size": 89016,
            "upload_time": "2025-07-13T23:34:55",
            "upload_time_iso_8601": "2025-07-13T23:34:55.289214Z",
            "url": "https://files.pythonhosted.org/packages/c7/70/546e7700e329442de40f242e29a521e7c37367ea5b6faf4a58efb37f28f1/graphomaly-0.3.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "e76197da753bd2fb3d531cf7b3c9f58889178f25b55b79e2c2679a374d73a55e",
                "md5": "a2d3bc915de9b4b83920e68d15d32f77",
                "sha256": "7cdf8b64eb8e9d7c110d47a53b12c5d3483275b7743c95708f1be3ddf4d2f30a"
            },
            "downloads": -1,
            "filename": "graphomaly-0.3.2.tar.gz",
            "has_sig": false,
            "md5_digest": "a2d3bc915de9b4b83920e68d15d32f77",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 71450,
            "upload_time": "2025-07-13T23:34:56",
            "upload_time_iso_8601": "2025-07-13T23:34:56.903641Z",
            "url": "https://files.pythonhosted.org/packages/e7/61/97da753bd2fb3d531cf7b3c9f58889178f25b55b79e2c2679a374d73a55e/graphomaly-0.3.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-13 23:34:56",
    "github": false,
    "gitlab": true,
    "bitbucket": false,
    "codeberg": false,
    "gitlab_user": "unibuc",
    "gitlab_project": "graphomaly",
    "lcname": "graphomaly"
}
        
Elapsed time: 0.81638s