graphomaly


Namegraphomaly JSON
Version 0.3.1 PyPI version JSON
download
home_pagehttps://gitlab.com/unibuc/graphomaly/graphomaly
SummaryAnomaly detection in graphs modeling financial transactions and computer networks.
upload_time2023-05-12 09:46:20
maintainer
docs_urlNone
authorPaul Irofti, Ștefania Budulan, Bogdan Dumitrescu, Andra Băltoiu, Nicolae Cleju, Andrei Iulian Hîji
requires_python>=3.6
license
keywords anomaly detection graphs financial transactions computer networks abnormal behavior machine learning security
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Graphomaly

Automatic tool for Anti-Money Laundering (AML) and  detecting abnormal behavior in computer networks. Find abnormal data in graph and network structures.

Official package documentation [here](https://unibuc.gitlab.io/graphomaly/graphomaly/).

This work was initially supported by the [Graphomaly Research Grant](http://graphomaly.upb.ro/) and later partially supported by the [Netalert Research Grant](https://cs.unibuc.ro/~pirofti/netalert.html).

## Installation and setup
Install via pip from the [PyPi repository](https://pypi.org/project/graphomaly/):
```
pip install graphomaly
```

or for the latest changes not yet in the official release:
```
pip install git+https://gitlab.com/unibuc/graphomaly/graphomaly
```

Install via docker from the [DockerHub repository](https://hub.docker.com/r/pirofti/graphomaly)
```
docker pull pirofti/graphomaly
```
For using the GPU pull the dedicated image:
```
docker pull pirofti/graphomaly:latest_gpu
```

## Usage

The package follows the [sklearn](https://scikit-learn.org/) API and can be included in your projects via
```
from graphomaly.estimator import GraphomalyEstimator
```
which will provide you with a standard scikit-learn estimator that you can use in your pipeline.

For configuration and tweaks please consult the YAML file for now until documentation matures.

## Development and testing

First clone the repository and change directory to the root of your fresh checkout.

#### 0. Install Prerequisites
Install PyPA’s [build](https://packaging.python.org/en/latest/key_projects/#build):
```
python3 -m pip install --upgrade build
```

#### 1. Build
Inside the Graphomaly directory
```
python -m build
```

#### 2. Virtual Environment

Create a virtual environment with Python:
```
python -m venv venv
```

Activate the environment:
```
source venv/bin/activate
```

For Windows execute instead:
```
venv\Scripts\activate
```

#### 3. Install
Inside the virtual environment execute:
```
pip install dist/graphomaly-*.whl
```

## Running unit tests

First create the results directory:
```
mkdir -p tests/results/synthetic
```

Run the initial test on synthetic data to make sure things installed ok:
```
cd tests && python test_synthetic
```

Then run the other unit tests by hand as above or via `pytest`:

```
pytest  # add -v for verbose, add -s to print(...) to console from tests
```

            

Raw data

            {
    "_id": null,
    "home_page": "https://gitlab.com/unibuc/graphomaly/graphomaly",
    "name": "graphomaly",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": "",
    "keywords": "anomaly detection,graphs,financial transactions,computer networks,abnormal behavior,machine learning,security",
    "author": "Paul Irofti, \u0218tefania Budulan, Bogdan Dumitrescu, Andra B\u0103ltoiu, Nicolae Cleju, Andrei Iulian H\u00eeji",
    "author_email": "graphomaly@fmi.unibuc.ro",
    "download_url": "https://files.pythonhosted.org/packages/74/18/ff49baaecad5914ce5b2003c10899bbc6a67a70de8d34e954547d86c0bf7/graphomaly-0.3.1.tar.gz",
    "platform": null,
    "description": "# Graphomaly\n\nAutomatic tool for Anti-Money Laundering (AML) and  detecting abnormal behavior in computer networks. Find abnormal data in graph and network structures.\n\nOfficial package documentation [here](https://unibuc.gitlab.io/graphomaly/graphomaly/).\n\nThis work was initially supported by the [Graphomaly Research Grant](http://graphomaly.upb.ro/) and later partially supported by the [Netalert Research Grant](https://cs.unibuc.ro/~pirofti/netalert.html).\n\n## Installation and setup\nInstall via pip from the [PyPi repository](https://pypi.org/project/graphomaly/):\n```\npip install graphomaly\n```\n\nor for the latest changes not yet in the official release:\n```\npip install git+https://gitlab.com/unibuc/graphomaly/graphomaly\n```\n\nInstall via docker from the [DockerHub repository](https://hub.docker.com/r/pirofti/graphomaly)\n```\ndocker pull pirofti/graphomaly\n```\nFor using the GPU pull the dedicated image:\n```\ndocker pull pirofti/graphomaly:latest_gpu\n```\n\n## Usage\n\nThe package follows the [sklearn](https://scikit-learn.org/) API and can be included in your projects via\n```\nfrom graphomaly.estimator import GraphomalyEstimator\n```\nwhich will provide you with a standard scikit-learn estimator that you can use in your pipeline.\n\nFor configuration and tweaks please consult the YAML file for now until documentation matures.\n\n## Development and testing\n\nFirst clone the repository and change directory to the root of your fresh checkout.\n\n#### 0. Install Prerequisites\nInstall PyPA\u2019s [build](https://packaging.python.org/en/latest/key_projects/#build):\n```\npython3 -m pip install --upgrade build\n```\n\n#### 1. Build\nInside the Graphomaly directory\n```\npython -m build\n```\n\n#### 2. Virtual Environment\n\nCreate a virtual environment with Python:\n```\npython -m venv venv\n```\n\nActivate the environment:\n```\nsource venv/bin/activate\n```\n\nFor Windows execute instead:\n```\nvenv\\Scripts\\activate\n```\n\n#### 3. Install\nInside the virtual environment execute:\n```\npip install dist/graphomaly-*.whl\n```\n\n## Running unit tests\n\nFirst create the results directory:\n```\nmkdir -p tests/results/synthetic\n```\n\nRun the initial test on synthetic data to make sure things installed ok:\n```\ncd tests && python test_synthetic\n```\n\nThen run the other unit tests by hand as above or via `pytest`:\n\n```\npytest  # add -v for verbose, add -s to print(...) to console from tests\n```\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "Anomaly detection in graphs modeling financial transactions and computer networks.",
    "version": "0.3.1",
    "project_urls": {
        "Bug Tracker": "https://gitlab.com/unibuc/graphomaly/graphomaly/-/issues",
        "Homepage": "https://gitlab.com/unibuc/graphomaly/graphomaly"
    },
    "split_keywords": [
        "anomaly detection",
        "graphs",
        "financial transactions",
        "computer networks",
        "abnormal behavior",
        "machine learning",
        "security"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "d16dca01369aee6166fa247c3d8d0c3b3654f26028b7448a9376efc92f28e319",
                "md5": "d17ebe0400ef7b20317934ea9991e021",
                "sha256": "3601a5aa024947953137ff448135be397074775f170d02a9c506e4507dede039"
            },
            "downloads": -1,
            "filename": "graphomaly-0.3.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "d17ebe0400ef7b20317934ea9991e021",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6",
            "size": 88913,
            "upload_time": "2023-05-12T09:46:18",
            "upload_time_iso_8601": "2023-05-12T09:46:18.390962Z",
            "url": "https://files.pythonhosted.org/packages/d1/6d/ca01369aee6166fa247c3d8d0c3b3654f26028b7448a9376efc92f28e319/graphomaly-0.3.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "7418ff49baaecad5914ce5b2003c10899bbc6a67a70de8d34e954547d86c0bf7",
                "md5": "5794b4bf5e357a0c813660a86c0148b7",
                "sha256": "d9e541ff6420b17e2f0bca26faabe768e1b7724e956948d6cdf678d0259f56cb"
            },
            "downloads": -1,
            "filename": "graphomaly-0.3.1.tar.gz",
            "has_sig": false,
            "md5_digest": "5794b4bf5e357a0c813660a86c0148b7",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 71053,
            "upload_time": "2023-05-12T09:46:20",
            "upload_time_iso_8601": "2023-05-12T09:46:20.676991Z",
            "url": "https://files.pythonhosted.org/packages/74/18/ff49baaecad5914ce5b2003c10899bbc6a67a70de8d34e954547d86c0bf7/graphomaly-0.3.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-05-12 09:46:20",
    "github": false,
    "gitlab": true,
    "bitbucket": false,
    "codeberg": false,
    "gitlab_user": "unibuc",
    "gitlab_project": "graphomaly",
    "lcname": "graphomaly"
}
        
Elapsed time: 0.07361s