gretta


Namegretta JSON
Version 0.0.1 PyPI version JSON
download
home_pagehttps://github.com/recspert/gretta
SummaryTensor-based SSA for sparse datasets with spatiotemporal information
upload_time2023-10-21 08:46:25
maintainer
docs_urlNone
authorEvgeny Frolov
requires_python
license
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # GRETTA
**G**eneralized **RE**stricted **T**ensor **T**imeseries **A**nalysis.

This package is designed to perform multivariate analysis of incomplete timeseries based on the generalization of the restricted SSA method to sparse higher order (3D) data.
See an example on the analysis of spatiotemporal humidity data in the [Example-1.ipynb](Example-1.ipynb) jupyter notebook.

# Requirements
- numpy
- scipy
- pandas
- numba

# Citation
If you use `gretta` in published research, please cite:
> Frolov E, Oseledets I. 2023. Tensor-Based Sequential Learning via Hankel Matrix Representation for Next Item Recommendations. IEEE Access. 2023 Jan 5; 11:6357-71. DOI: [10.1109/ACCESS.2023.3234863](https://doi.org/10.1109/ACCESS.2023.3234863). arXiv: [2212.05720](https://arxiv.org/abs/2212.05720).

BibTex entry:
```
@ARTICLE{Frolov2023,
  author={Frolov, Evgeny and Oseledets, Ivan},
  journal={IEEE Access}, 
  title={Tensor-Based Sequential Learning via Hankel Matrix Representation for Next Item Recommendations}, 
  year={2023},
  volume={11},
  number={},
  pages={6357-6371},
  doi={10.1109/ACCESS.2023.3234863}}
```

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/recspert/gretta",
    "name": "gretta",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "",
    "author": "Evgeny Frolov",
    "author_email": "",
    "download_url": "https://files.pythonhosted.org/packages/d6/c1/d2fdc979e753d9df0e34cbee74e96055d1be51bd1a592aa10fad89471a13/gretta-0.0.1.tar.gz",
    "platform": null,
    "description": "# GRETTA\r\n**G**eneralized **RE**stricted **T**ensor **T**imeseries **A**nalysis.\r\n\r\nThis package is designed to perform multivariate analysis of incomplete timeseries based on the generalization of the restricted SSA method to sparse higher order (3D) data.\r\nSee an example on the analysis of spatiotemporal humidity data in the [Example-1.ipynb](Example-1.ipynb) jupyter notebook.\r\n\r\n# Requirements\r\n- numpy\r\n- scipy\r\n- pandas\r\n- numba\r\n\r\n# Citation\r\nIf you use `gretta` in published research, please cite:\r\n> Frolov E, Oseledets I. 2023. Tensor-Based Sequential Learning via Hankel Matrix Representation for Next Item Recommendations. IEEE Access. 2023 Jan 5; 11:6357-71. DOI: [10.1109/ACCESS.2023.3234863](https://doi.org/10.1109/ACCESS.2023.3234863). arXiv: [2212.05720](https://arxiv.org/abs/2212.05720).\r\n\r\nBibTex entry:\r\n```\r\n@ARTICLE{Frolov2023,\r\n  author={Frolov, Evgeny and Oseledets, Ivan},\r\n  journal={IEEE Access}, \r\n  title={Tensor-Based Sequential Learning via Hankel Matrix Representation for Next Item Recommendations}, \r\n  year={2023},\r\n  volume={11},\r\n  number={},\r\n  pages={6357-6371},\r\n  doi={10.1109/ACCESS.2023.3234863}}\r\n```\r\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "Tensor-based SSA for sparse datasets with spatiotemporal information",
    "version": "0.0.1",
    "project_urls": {
        "Homepage": "https://github.com/recspert/gretta"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "d6c1d2fdc979e753d9df0e34cbee74e96055d1be51bd1a592aa10fad89471a13",
                "md5": "9a3adae324b7f3f1cd09a8773312dceb",
                "sha256": "5317129985188cf8d56e76376c2408cb63c190bd951a0938fde028c9fc957148"
            },
            "downloads": -1,
            "filename": "gretta-0.0.1.tar.gz",
            "has_sig": false,
            "md5_digest": "9a3adae324b7f3f1cd09a8773312dceb",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 10310,
            "upload_time": "2023-10-21T08:46:25",
            "upload_time_iso_8601": "2023-10-21T08:46:25.137561Z",
            "url": "https://files.pythonhosted.org/packages/d6/c1/d2fdc979e753d9df0e34cbee74e96055d1be51bd1a592aa10fad89471a13/gretta-0.0.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-10-21 08:46:25",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "recspert",
    "github_project": "gretta",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "gretta"
}
        
Elapsed time: 0.36089s