| Name | gretta JSON |
| Version |
0.0.1
JSON |
| download |
| home_page | https://github.com/recspert/gretta |
| Summary | Tensor-based SSA for sparse datasets with spatiotemporal information |
| upload_time | 2023-10-21 08:46:25 |
| maintainer | |
| docs_url | None |
| author | Evgeny Frolov |
| requires_python | |
| license | |
| keywords |
|
| VCS |
 |
| bugtrack_url |
|
| requirements |
No requirements were recorded.
|
| Travis-CI |
No Travis.
|
| coveralls test coverage |
No coveralls.
|
# GRETTA
**G**eneralized **RE**stricted **T**ensor **T**imeseries **A**nalysis.
This package is designed to perform multivariate analysis of incomplete timeseries based on the generalization of the restricted SSA method to sparse higher order (3D) data.
See an example on the analysis of spatiotemporal humidity data in the [Example-1.ipynb](Example-1.ipynb) jupyter notebook.
# Requirements
- numpy
- scipy
- pandas
- numba
# Citation
If you use `gretta` in published research, please cite:
> Frolov E, Oseledets I. 2023. Tensor-Based Sequential Learning via Hankel Matrix Representation for Next Item Recommendations. IEEE Access. 2023 Jan 5; 11:6357-71. DOI: [10.1109/ACCESS.2023.3234863](https://doi.org/10.1109/ACCESS.2023.3234863). arXiv: [2212.05720](https://arxiv.org/abs/2212.05720).
BibTex entry:
```
@ARTICLE{Frolov2023,
author={Frolov, Evgeny and Oseledets, Ivan},
journal={IEEE Access},
title={Tensor-Based Sequential Learning via Hankel Matrix Representation for Next Item Recommendations},
year={2023},
volume={11},
number={},
pages={6357-6371},
doi={10.1109/ACCESS.2023.3234863}}
```
Raw data
{
"_id": null,
"home_page": "https://github.com/recspert/gretta",
"name": "gretta",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "",
"author": "Evgeny Frolov",
"author_email": "",
"download_url": "https://files.pythonhosted.org/packages/d6/c1/d2fdc979e753d9df0e34cbee74e96055d1be51bd1a592aa10fad89471a13/gretta-0.0.1.tar.gz",
"platform": null,
"description": "# GRETTA\r\n**G**eneralized **RE**stricted **T**ensor **T**imeseries **A**nalysis.\r\n\r\nThis package is designed to perform multivariate analysis of incomplete timeseries based on the generalization of the restricted SSA method to sparse higher order (3D) data.\r\nSee an example on the analysis of spatiotemporal humidity data in the [Example-1.ipynb](Example-1.ipynb) jupyter notebook.\r\n\r\n# Requirements\r\n- numpy\r\n- scipy\r\n- pandas\r\n- numba\r\n\r\n# Citation\r\nIf you use `gretta` in published research, please cite:\r\n> Frolov E, Oseledets I. 2023. Tensor-Based Sequential Learning via Hankel Matrix Representation for Next Item Recommendations. IEEE Access. 2023 Jan 5; 11:6357-71. DOI: [10.1109/ACCESS.2023.3234863](https://doi.org/10.1109/ACCESS.2023.3234863). arXiv: [2212.05720](https://arxiv.org/abs/2212.05720).\r\n\r\nBibTex entry:\r\n```\r\n@ARTICLE{Frolov2023,\r\n author={Frolov, Evgeny and Oseledets, Ivan},\r\n journal={IEEE Access}, \r\n title={Tensor-Based Sequential Learning via Hankel Matrix Representation for Next Item Recommendations}, \r\n year={2023},\r\n volume={11},\r\n number={},\r\n pages={6357-6371},\r\n doi={10.1109/ACCESS.2023.3234863}}\r\n```\r\n",
"bugtrack_url": null,
"license": "",
"summary": "Tensor-based SSA for sparse datasets with spatiotemporal information",
"version": "0.0.1",
"project_urls": {
"Homepage": "https://github.com/recspert/gretta"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "d6c1d2fdc979e753d9df0e34cbee74e96055d1be51bd1a592aa10fad89471a13",
"md5": "9a3adae324b7f3f1cd09a8773312dceb",
"sha256": "5317129985188cf8d56e76376c2408cb63c190bd951a0938fde028c9fc957148"
},
"downloads": -1,
"filename": "gretta-0.0.1.tar.gz",
"has_sig": false,
"md5_digest": "9a3adae324b7f3f1cd09a8773312dceb",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 10310,
"upload_time": "2023-10-21T08:46:25",
"upload_time_iso_8601": "2023-10-21T08:46:25.137561Z",
"url": "https://files.pythonhosted.org/packages/d6/c1/d2fdc979e753d9df0e34cbee74e96055d1be51bd1a592aa10fad89471a13/gretta-0.0.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-10-21 08:46:25",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "recspert",
"github_project": "gretta",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "gretta"
}