[![Multi-Modality](agorabanner.png)](https://discord.gg/qUtxnK2NMf)
# Griffin
## install
`$ pip install griffin-torch`
## usage
```python
import torch
from griffin_torch.main import Griffin
# Forward pass
x = torch.randint(0, 100, (1, 10))
# Model
model = Griffin(
dim=512, # Dimension of the model
num_tokens=100, # Number of tokens in the input
seq_len=10, # Length of the input sequence
depth=8, # Number of transformer blocks
mlp_mult=4, # Multiplier for the hidden dimension in the MLPs
dropout=0.1, # Dropout rate
)
# Forward pass
y = model(x)
print(y)
```
# License
MIT
Raw data
{
"_id": null,
"home_page": "https://github.com/kyegomez/Griffin",
"name": "griffin-torch",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.6,<4.0",
"maintainer_email": "",
"keywords": "artificial intelligence,deep learning,optimizers,Prompt Engineering",
"author": "Kye Gomez",
"author_email": "kye@apac.ai",
"download_url": "https://files.pythonhosted.org/packages/88/e6/4c282c5d9bd2dab6e762a2fe10e21655bedaec7288d58ca6b8f0888ac52b/griffin_torch-0.0.3.tar.gz",
"platform": null,
"description": "[![Multi-Modality](agorabanner.png)](https://discord.gg/qUtxnK2NMf)\n\n# Griffin\n\n## install\n`$ pip install griffin-torch`\n\n\n## usage\n```python\nimport torch\nfrom griffin_torch.main import Griffin\n\n# Forward pass\nx = torch.randint(0, 100, (1, 10))\n\n# Model\nmodel = Griffin(\n dim=512, # Dimension of the model\n num_tokens=100, # Number of tokens in the input\n seq_len=10, # Length of the input sequence\n depth=8, # Number of transformer blocks\n mlp_mult=4, # Multiplier for the hidden dimension in the MLPs\n dropout=0.1, # Dropout rate\n)\n\n# Forward pass\ny = model(x)\n\nprint(y)\n\n```\n\n\n\n# License\nMIT\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Griffin - Pytorch",
"version": "0.0.3",
"project_urls": {
"Documentation": "https://github.com/kyegomez/Griffin",
"Homepage": "https://github.com/kyegomez/Griffin",
"Repository": "https://github.com/kyegomez/Griffin"
},
"split_keywords": [
"artificial intelligence",
"deep learning",
"optimizers",
"prompt engineering"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "2b56843d2fb58540867cbccff543580d6fd8baa9c0259af015e3b770ecb6ebb8",
"md5": "9384d530d99326e3aee800e0a4c4faff",
"sha256": "dc9a42a5bae2b77ef661780a1ca0f5dbd1cde93a3cac668aad8f9dd5388e8d4a"
},
"downloads": -1,
"filename": "griffin_torch-0.0.3-py3-none-any.whl",
"has_sig": false,
"md5_digest": "9384d530d99326e3aee800e0a4c4faff",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.6,<4.0",
"size": 4892,
"upload_time": "2024-03-04T18:17:32",
"upload_time_iso_8601": "2024-03-04T18:17:32.527820Z",
"url": "https://files.pythonhosted.org/packages/2b/56/843d2fb58540867cbccff543580d6fd8baa9c0259af015e3b770ecb6ebb8/griffin_torch-0.0.3-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "88e64c282c5d9bd2dab6e762a2fe10e21655bedaec7288d58ca6b8f0888ac52b",
"md5": "2961704eb19a588edc12be6591983dcb",
"sha256": "61bf1baa51ca906aa0b2785bbdb3e466fae00e2787fd14a32ba182463df6c37d"
},
"downloads": -1,
"filename": "griffin_torch-0.0.3.tar.gz",
"has_sig": false,
"md5_digest": "2961704eb19a588edc12be6591983dcb",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.6,<4.0",
"size": 4871,
"upload_time": "2024-03-04T18:17:38",
"upload_time_iso_8601": "2024-03-04T18:17:38.151275Z",
"url": "https://files.pythonhosted.org/packages/88/e6/4c282c5d9bd2dab6e762a2fe10e21655bedaec7288d58ca6b8f0888ac52b/griffin_torch-0.0.3.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-03-04 18:17:38",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "kyegomez",
"github_project": "Griffin",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [],
"lcname": "griffin-torch"
}