gseapy


Namegseapy JSON
Version 1.1.3 PyPI version JSON
download
home_pagehttps://github.com/zqfang/gseapy
SummaryGene Set Enrichment Analysis in Python
upload_time2024-05-08 18:06:29
maintainerNone
docs_urlNone
authorZhuoqing Fang
requires_python>=3.7
licenseMIT
keywords gene ontology go biology enrichment bioinformatics computational biology
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            
GSEApy
========

GSEApy: Gene Set Enrichment Analysis in Python.
------------------------------------------------

.. image:: https://badge.fury.io/py/gseapy.svg
    :target: https://badge.fury.io/py/gseapy

.. image:: https://img.shields.io/conda/vn/bioconda/GSEApy.svg?style=plastic
    :target: http://bioconda.github.io

.. image:: https://anaconda.org/bioconda/gseapy/badges/downloads.svg   
    :target: https://anaconda.org/bioconda/gseapy

.. image:: https://github.com/zqfang/GSEApy/workflows/GSEApy/badge.svg?branch=master
    :target: https://github.com/zqfang/GSEApy/actions
    :alt: Action Status

.. image:: http://readthedocs.org/projects/gseapy/badge/?version=master
    :target: http://gseapy.readthedocs.io/en/master/?badge=master
    :alt: Documentation Status

.. image:: https://img.shields.io/badge/license-MIT-blue.svg
    :target:  https://img.shields.io/badge/license-MIT-blue.svg

.. image:: https://img.shields.io/pypi/pyversions/gseapy.svg
    :alt: PyPI - Python Version


**Release notes** : https://github.com/zqfang/GSEApy/releases

`Tutorial for scRNA-seq datasets <https://gseapy.readthedocs.io/en/latest/singlecell_example.html#>`_

`Tutorial for general usage <https://gseapy.readthedocs.io/en/latest/gseapy_example.html>`_


Citation
------------------------------------
::

    Zhuoqing Fang, Xinyuan Liu, Gary Peltz, GSEApy: a comprehensive package for performing gene set enrichment analysis in Python, 
    Bioinformatics, 2022;, btac757, https://doi.org/10.1093/bioinformatics/btac757



GSEApy is a Python/Rust implementation for **GSEA** and wrapper for **Enrichr**.
--------------------------------------------------------------------------------------------

GSEApy can be used for **RNA-seq, ChIP-seq, Microarray** data. It can be used for convenient GO enrichment and to produce **publication quality figures** in python.


GSEApy has 7 sub-commands available: ``gsea``, ``prerank``, ``ssgsea``, ``gsva``, ``replot`` ``enrichr``, ``biomart``.


:gsea:    The ``gsea`` module produces `GSEA  <http://www.broadinstitute.org/cancer/software/gsea/wiki/index.php/Main_Page>`_ results.  The input requries a txt file(FPKM, Expected Counts, TPM, et.al), a cls file, and gene_sets file in gmt format.
:prerank: The ``prerank`` module produces **Prerank tool** results.  The input expects a pre-ranked gene list dataset with correlation values, provided in .rnk format, and gene_sets file in gmt format.  ``prerank`` module is an API to `GSEA` pre-rank tools.
:ssgsea: The ``ssgsea`` module performs **single sample GSEA(ssGSEA)** analysis.  The input expects a pd.Series (indexed by gene name), or a pd.DataFrame (include ``GCT`` file) with expression values and a ``GMT`` file. For multiple sample input, ssGSEA reconigzes gct format, too. ssGSEA enrichment score for the gene set is described by `D. Barbie et al 2009 <http://www.nature.com/nature/journal/v462/n7269/abs/nature08460.html>`_.
:gsva: The ``gsva`` module performs `GSVA <https://github.com/rcastelo/GSVA>`_ method by `Hänzelmann et al <https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-7>`_. The input is same to ssgsea.
:replot: The ``replot`` module reproduce GSEA desktop version results.  The only input for GSEApy is the location to ``GSEA`` Desktop output results.
:enrichr: The ``enrichr`` module enable you perform gene set enrichment analysis using ``Enrichr`` API. Enrichr is open source and freely available online at: http://amp.pharm.mssm.edu/Enrichr . It runs very fast.
:biomart: The ``biomart`` module helps you convert gene ids using BioMart API.


Please use 'gseapy COMMAND -h' to see the detail description for each option of each module.


The full ``GSEA`` is far too extensive to describe here; see
`GSEA  <http://www.broadinstitute.org/cancer/software/gsea/wiki/index.php/Main_Page>`_ documentation for more information. All files' formats for GSEApy are identical to ``GSEA`` desktop version.



Why GSEApy
-----------------------------------------------------

I would like to use Pandas to explore my data, but I did not find a convenient tool to
do gene set enrichment analysis in python. So, here are my reasons:

* **Ability to run inside python interactive console without having to switch to R!!!**
* User friendly for both wet and dry lab users.
* Produce or reproduce publishable figures.
* Perform batch jobs easy.
* Easy to use in bash shell or your data analysis workflow, e.g. snakemake.


GSEApy vs GSEA(Broad) output
-----------------------------------------------
Using the same data for ``GSEAPreranked``, and ``GSEApy`` reproduce similar results.


.. image:: docs/Preank.py.vs.broad.jpg
    :width: 400


See more output here: `Example <http://gseapy.readthedocs.io/en/master/gseapy_example.html>`_


Installation
------------

| Install gseapy package from bioconda or pip.


.. code:: shell

   # if you have conda (MacOS_x86-64 and Linux only)
   $ conda install -c bioconda gseapy
   # Windows and MacOS_ARM64(M1/2-Chip)
   $ pip install gseapy


| If pip install failed, use

.. code:: shell

   # you need to install rust first to compile the code
   curl https://sh.rustup.rs -sSf | sh -s -- -y
   # export rust compiler 
   export PATH="$PATH:$HOME/.cargo/bin"
   # install
   $ pip install git+git://github.com/zqfang/gseapy.git#egg=gseapy


Dependency
--------------
* Python 3.7+

Mandatory
~~~~~~~~~

* build
    * Rust: For gseapy > 0.11.0, Rust compiler is needed
    * setuptools-rust
* run
    * Numpy >= 1.13.0
    * Scipy
    * Pandas
    * Matplotlib
    * Requests

Run GSEApy
-----------------


For command line usage:
~~~~~~~~~~~~~~~~~~~~~~~

.. code:: bash


  # An example to reproduce figures using replot module.
  $ gseapy replot -i ./Gsea.reports -o test


  # An example to run GSEA using gseapy gsea module
  $ gseapy gsea -d exptable.txt -c test.cls -g gene_sets.gmt -o test

  # An example to run Prerank using gseapy prerank module
  $ gseapy prerank -r gsea_data.rnk -g gene_sets.gmt -o test

  # An example to run ssGSEA using gseapy ssgsea module
  $ gseapy ssgsea -d expression.txt -g gene_sets.gmt -o test

  # An example to run GSVA using gseapy ssgsea module
  $ gseapy gsva -d expression.txt -g gene_sets.gmt -o test

  # An example to use enrichr api
  # see details for -g input -> ``get_library_name`` 
  $ gseapy enrichr -i gene_list.txt -g KEGG_2016 -o test



Run gseapy inside python console:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

1. Prepare expression.txt, gene_sets.gmt and test.cls required by GSEA, you could do this

.. code:: python

    import gseapy

    # run GSEA.
    gseapy.gsea(data='expression.txt', gene_sets='gene_sets.gmt', cls='test.cls', outdir='test')

    # run prerank
    gseapy.prerank(rnk='gsea_data.rnk', gene_sets='gene_sets.gmt', outdir='test')

    # run ssGSEA
    gseapy.ssgsea(data="expression.txt", gene_sets= "gene_sets.gmt", outdir='test')

    # run GSVA
    gseapy.gsva(data="expression.txt", gene_sets= "gene_sets.gmt", outdir='test')

    # An example to reproduce figures using replot module.
    gseapy.replot(indir='./Gsea.reports', outdir='test')


2. If you prefer to use Dataframe, dict, list in interactive python console, you could do this.

see detail here: `Example <http://gseapy.readthedocs.io/en/master/gseapy_example.html>`_

.. code:: python


    # assign dataframe, and use enrichr library data set 'KEGG_2016'
    expression_dataframe = pd.DataFrame()

    sample_name = ['A','A','A','B','B','B'] # always only two group,any names you like

    # assign gene_sets parameter with enrichr library name or gmt file on your local computer.
    gseapy.gsea(data=expression_dataframe, gene_sets='KEGG_2016', cls= sample_names, outdir='test')

    # prerank tool
    gene_ranked_dataframe = pd.DataFrame()
    gseapy.prerank(rnk=gene_ranked_dataframe, gene_sets='KEGG_2016', outdir='test')

    # ssGSEA
    gseapy.ssgsea(data=expression_dataframe, gene_sets='KEGG_2016', outdir='test')

    # gsva
    gseapy.gsva(data=expression_dataframe, gene_sets='KEGG_2016', outdir='test')


3. For ``enrichr`` , you could assign a list, pd.Series, pd.DataFrame object, or a txt file (should be one gene name per row.)

.. code:: python

    # assign a list object to enrichr
    gl = ['SCARA3', 'LOC100044683', 'CMBL', 'CLIC6', 'IL13RA1', 'TACSTD2', 'DKKL1', 'CSF1',
         'SYNPO2L', 'TINAGL1', 'PTX3', 'BGN', 'HERC1', 'EFNA1', 'CIB2', 'PMP22', 'TMEM173']

    gseapy.enrichr(gene_list=gl, gene_sets='KEGG_2016', outdir='test')

    # or a txt file path.
    gseapy.enrichr(gene_list='gene_list.txt', gene_sets='KEGG_2016',
                   outdir='test', cutoff=0.05, format='png' )


GSEApy supported gene set libaries :
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

To see the full list of gseapy supported gene set libraries, please click here: `Library <http://amp.pharm.mssm.edu/Enrichr/#stats>`_

Or use ``get_library_name`` function inside python console.

.. code:: python

    #see full list of latest enrichr library names, which will pass to -g parameter:
    names = gseapy.get_library_name()

    # show top 20 entries.
    print(names[:20])


   ['Genome_Browser_PWMs',
   'TRANSFAC_and_JASPAR_PWMs',
   'ChEA_2013',
   'Drug_Perturbations_from_GEO_2014',
   'ENCODE_TF_ChIP-seq_2014',
   'BioCarta_2013',
   'Reactome_2013',
   'WikiPathways_2013',
   'Disease_Signatures_from_GEO_up_2014',
   'KEGG_2016',
   'TF-LOF_Expression_from_GEO',
   'TargetScan_microRNA',
   'PPI_Hub_Proteins',
   'GO_Molecular_Function_2015',
   'GeneSigDB',
   'Chromosome_Location',
   'Human_Gene_Atlas',
   'Mouse_Gene_Atlas',
   'GO_Cellular_Component_2015',
   'GO_Biological_Process_2015',
   'Human_Phenotype_Ontology',]



Dev 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. code:: shell


        # test rust extension only 
        cargo test --features=extension-module
        # test whole package
        python setup.py test



Bug Report
~~~~~~~~~~~~~~~~~~~~~~~~~~~

If you would like to report any bugs when use gseapy, don't hesitate to create an issue on github here.


To get help of GSEApy
------------------------------------

1. See `Frequently Asked Questions <https://gseapy.readthedocs.io/en/latest/faq.html>`_

2. Visit the document site at `Examples <https://gseapy.readthedocs.io/en/latest/gseapy_example.html>`_

3. The GSEApy discussion channel: `Q&A <https://github.com/zqfang/GSEApy/discussions>`_ 


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/zqfang/gseapy",
    "name": "gseapy",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": null,
    "keywords": "Gene Ontology, GO, Biology, Enrichment, Bioinformatics, Computational Biology",
    "author": "Zhuoqing Fang",
    "author_email": "fzq518@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/28/c2/7c03f74682de640b71ba9a9958c5c8a90867b0f4f9ffef2c15702113d47a/gseapy-1.1.3.tar.gz",
    "platform": null,
    "description": "\nGSEApy\n========\n\nGSEApy: Gene Set Enrichment Analysis in Python.\n------------------------------------------------\n\n.. image:: https://badge.fury.io/py/gseapy.svg\n    :target: https://badge.fury.io/py/gseapy\n\n.. image:: https://img.shields.io/conda/vn/bioconda/GSEApy.svg?style=plastic\n    :target: http://bioconda.github.io\n\n.. image:: https://anaconda.org/bioconda/gseapy/badges/downloads.svg   \n    :target: https://anaconda.org/bioconda/gseapy\n\n.. image:: https://github.com/zqfang/GSEApy/workflows/GSEApy/badge.svg?branch=master\n    :target: https://github.com/zqfang/GSEApy/actions\n    :alt: Action Status\n\n.. image:: http://readthedocs.org/projects/gseapy/badge/?version=master\n    :target: http://gseapy.readthedocs.io/en/master/?badge=master\n    :alt: Documentation Status\n\n.. image:: https://img.shields.io/badge/license-MIT-blue.svg\n    :target:  https://img.shields.io/badge/license-MIT-blue.svg\n\n.. image:: https://img.shields.io/pypi/pyversions/gseapy.svg\n    :alt: PyPI - Python Version\n\n\n**Release notes** : https://github.com/zqfang/GSEApy/releases\n\n`Tutorial for scRNA-seq datasets <https://gseapy.readthedocs.io/en/latest/singlecell_example.html#>`_\n\n`Tutorial for general usage <https://gseapy.readthedocs.io/en/latest/gseapy_example.html>`_\n\n\nCitation\n------------------------------------\n::\n\n    Zhuoqing Fang, Xinyuan Liu, Gary Peltz, GSEApy: a comprehensive package for performing gene set enrichment analysis in Python, \n    Bioinformatics, 2022;, btac757, https://doi.org/10.1093/bioinformatics/btac757\n\n\n\nGSEApy is a Python/Rust implementation for **GSEA** and wrapper for **Enrichr**.\n--------------------------------------------------------------------------------------------\n\nGSEApy can be used for **RNA-seq, ChIP-seq, Microarray** data. It can be used for convenient GO enrichment and to produce **publication quality figures** in python.\n\n\nGSEApy has 7 sub-commands available: ``gsea``, ``prerank``, ``ssgsea``, ``gsva``, ``replot`` ``enrichr``, ``biomart``.\n\n\n:gsea:    The ``gsea`` module produces `GSEA  <http://www.broadinstitute.org/cancer/software/gsea/wiki/index.php/Main_Page>`_ results.  The input requries a txt file(FPKM, Expected Counts, TPM, et.al), a cls file, and gene_sets file in gmt format.\n:prerank: The ``prerank`` module produces **Prerank tool** results.  The input expects a pre-ranked gene list dataset with correlation values, provided in .rnk format, and gene_sets file in gmt format.  ``prerank`` module is an API to `GSEA` pre-rank tools.\n:ssgsea: The ``ssgsea`` module performs **single sample GSEA(ssGSEA)** analysis.  The input expects a pd.Series (indexed by gene name), or a pd.DataFrame (include ``GCT`` file) with expression values and a ``GMT`` file. For multiple sample input, ssGSEA reconigzes gct format, too. ssGSEA enrichment score for the gene set is described by `D. Barbie et al 2009 <http://www.nature.com/nature/journal/v462/n7269/abs/nature08460.html>`_.\n:gsva: The ``gsva`` module performs `GSVA <https://github.com/rcastelo/GSVA>`_ method by `H\u00e4nzelmann et al <https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-7>`_. The input is same to ssgsea.\n:replot: The ``replot`` module reproduce GSEA desktop version results.  The only input for GSEApy is the location to ``GSEA`` Desktop output results.\n:enrichr: The ``enrichr`` module enable you perform gene set enrichment analysis using ``Enrichr`` API. Enrichr is open source and freely available online at: http://amp.pharm.mssm.edu/Enrichr . It runs very fast.\n:biomart: The ``biomart`` module helps you convert gene ids using BioMart API.\n\n\nPlease use 'gseapy COMMAND -h' to see the detail description for each option of each module.\n\n\nThe full ``GSEA`` is far too extensive to describe here; see\n`GSEA  <http://www.broadinstitute.org/cancer/software/gsea/wiki/index.php/Main_Page>`_ documentation for more information. All files' formats for GSEApy are identical to ``GSEA`` desktop version.\n\n\n\nWhy GSEApy\n-----------------------------------------------------\n\nI would like to use Pandas to explore my data, but I did not find a convenient tool to\ndo gene set enrichment analysis in python. So, here are my reasons:\n\n* **Ability to run inside python interactive console without having to switch to R!!!**\n* User friendly for both wet and dry lab users.\n* Produce or reproduce publishable figures.\n* Perform batch jobs easy.\n* Easy to use in bash shell or your data analysis workflow, e.g. snakemake.\n\n\nGSEApy vs GSEA(Broad) output\n-----------------------------------------------\nUsing the same data for ``GSEAPreranked``, and ``GSEApy`` reproduce similar results.\n\n\n.. image:: docs/Preank.py.vs.broad.jpg\n    :width: 400\n\n\nSee more output here: `Example <http://gseapy.readthedocs.io/en/master/gseapy_example.html>`_\n\n\nInstallation\n------------\n\n| Install gseapy package from bioconda or pip.\n\n\n.. code:: shell\n\n   # if you have conda (MacOS_x86-64 and Linux only)\n   $ conda install -c bioconda gseapy\n   # Windows and MacOS_ARM64(M1/2-Chip)\n   $ pip install gseapy\n\n\n| If pip install failed, use\n\n.. code:: shell\n\n   # you need to install rust first to compile the code\n   curl https://sh.rustup.rs -sSf | sh -s -- -y\n   # export rust compiler \n   export PATH=\"$PATH:$HOME/.cargo/bin\"\n   # install\n   $ pip install git+git://github.com/zqfang/gseapy.git#egg=gseapy\n\n\nDependency\n--------------\n* Python 3.7+\n\nMandatory\n~~~~~~~~~\n\n* build\n    * Rust: For gseapy > 0.11.0, Rust compiler is needed\n    * setuptools-rust\n* run\n    * Numpy >= 1.13.0\n    * Scipy\n    * Pandas\n    * Matplotlib\n    * Requests\n\nRun GSEApy\n-----------------\n\n\nFor command line usage:\n~~~~~~~~~~~~~~~~~~~~~~~\n\n.. code:: bash\n\n\n  # An example to reproduce figures using replot module.\n  $ gseapy replot -i ./Gsea.reports -o test\n\n\n  # An example to run GSEA using gseapy gsea module\n  $ gseapy gsea -d exptable.txt -c test.cls -g gene_sets.gmt -o test\n\n  # An example to run Prerank using gseapy prerank module\n  $ gseapy prerank -r gsea_data.rnk -g gene_sets.gmt -o test\n\n  # An example to run ssGSEA using gseapy ssgsea module\n  $ gseapy ssgsea -d expression.txt -g gene_sets.gmt -o test\n\n  # An example to run GSVA using gseapy ssgsea module\n  $ gseapy gsva -d expression.txt -g gene_sets.gmt -o test\n\n  # An example to use enrichr api\n  # see details for -g input -> ``get_library_name`` \n  $ gseapy enrichr -i gene_list.txt -g KEGG_2016 -o test\n\n\n\nRun gseapy inside python console:\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n\n1. Prepare expression.txt, gene_sets.gmt and test.cls required by GSEA, you could do this\n\n.. code:: python\n\n    import gseapy\n\n    # run GSEA.\n    gseapy.gsea(data='expression.txt', gene_sets='gene_sets.gmt', cls='test.cls', outdir='test')\n\n    # run prerank\n    gseapy.prerank(rnk='gsea_data.rnk', gene_sets='gene_sets.gmt', outdir='test')\n\n    # run ssGSEA\n    gseapy.ssgsea(data=\"expression.txt\", gene_sets= \"gene_sets.gmt\", outdir='test')\n\n    # run GSVA\n    gseapy.gsva(data=\"expression.txt\", gene_sets= \"gene_sets.gmt\", outdir='test')\n\n    # An example to reproduce figures using replot module.\n    gseapy.replot(indir='./Gsea.reports', outdir='test')\n\n\n2. If you prefer to use Dataframe, dict, list in interactive python console, you could do this.\n\nsee detail here: `Example <http://gseapy.readthedocs.io/en/master/gseapy_example.html>`_\n\n.. code:: python\n\n\n    # assign dataframe, and use enrichr library data set 'KEGG_2016'\n    expression_dataframe = pd.DataFrame()\n\n    sample_name = ['A','A','A','B','B','B'] # always only two group,any names you like\n\n    # assign gene_sets parameter with enrichr library name or gmt file on your local computer.\n    gseapy.gsea(data=expression_dataframe, gene_sets='KEGG_2016', cls= sample_names, outdir='test')\n\n    # prerank tool\n    gene_ranked_dataframe = pd.DataFrame()\n    gseapy.prerank(rnk=gene_ranked_dataframe, gene_sets='KEGG_2016', outdir='test')\n\n    # ssGSEA\n    gseapy.ssgsea(data=expression_dataframe, gene_sets='KEGG_2016', outdir='test')\n\n    # gsva\n    gseapy.gsva(data=expression_dataframe, gene_sets='KEGG_2016', outdir='test')\n\n\n3. For ``enrichr`` , you could assign a list, pd.Series, pd.DataFrame object, or a txt file (should be one gene name per row.)\n\n.. code:: python\n\n    # assign a list object to enrichr\n    gl = ['SCARA3', 'LOC100044683', 'CMBL', 'CLIC6', 'IL13RA1', 'TACSTD2', 'DKKL1', 'CSF1',\n         'SYNPO2L', 'TINAGL1', 'PTX3', 'BGN', 'HERC1', 'EFNA1', 'CIB2', 'PMP22', 'TMEM173']\n\n    gseapy.enrichr(gene_list=gl, gene_sets='KEGG_2016', outdir='test')\n\n    # or a txt file path.\n    gseapy.enrichr(gene_list='gene_list.txt', gene_sets='KEGG_2016',\n                   outdir='test', cutoff=0.05, format='png' )\n\n\nGSEApy supported gene set libaries :\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n\nTo see the full list of gseapy supported gene set libraries, please click here: `Library <http://amp.pharm.mssm.edu/Enrichr/#stats>`_\n\nOr use ``get_library_name`` function inside python console.\n\n.. code:: python\n\n    #see full list of latest enrichr library names, which will pass to -g parameter:\n    names = gseapy.get_library_name()\n\n    # show top 20 entries.\n    print(names[:20])\n\n\n   ['Genome_Browser_PWMs',\n   'TRANSFAC_and_JASPAR_PWMs',\n   'ChEA_2013',\n   'Drug_Perturbations_from_GEO_2014',\n   'ENCODE_TF_ChIP-seq_2014',\n   'BioCarta_2013',\n   'Reactome_2013',\n   'WikiPathways_2013',\n   'Disease_Signatures_from_GEO_up_2014',\n   'KEGG_2016',\n   'TF-LOF_Expression_from_GEO',\n   'TargetScan_microRNA',\n   'PPI_Hub_Proteins',\n   'GO_Molecular_Function_2015',\n   'GeneSigDB',\n   'Chromosome_Location',\n   'Human_Gene_Atlas',\n   'Mouse_Gene_Atlas',\n   'GO_Cellular_Component_2015',\n   'GO_Biological_Process_2015',\n   'Human_Phenotype_Ontology',]\n\n\n\nDev \n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n\n.. code:: shell\n\n\n        # test rust extension only \n        cargo test --features=extension-module\n        # test whole package\n        python setup.py test\n\n\n\nBug Report\n~~~~~~~~~~~~~~~~~~~~~~~~~~~\n\nIf you would like to report any bugs when use gseapy, don't hesitate to create an issue on github here.\n\n\nTo get help of GSEApy\n------------------------------------\n\n1. See `Frequently Asked Questions <https://gseapy.readthedocs.io/en/latest/faq.html>`_\n\n2. Visit the document site at `Examples <https://gseapy.readthedocs.io/en/latest/gseapy_example.html>`_\n\n3. The GSEApy discussion channel: `Q&A <https://github.com/zqfang/GSEApy/discussions>`_ \n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Gene Set Enrichment Analysis in Python",
    "version": "1.1.3",
    "project_urls": {
        "Documentation": "https://gseapy.readthedocs.io/en/latest/",
        "Download": "https://github.com/zqfang/gseapy",
        "Homepage": "https://github.com/zqfang/gseapy",
        "Source": "https://github.com/zqfang/GSEApy",
        "Tracker": "https://github.com/zqfang/GSEApy/issues"
    },
    "split_keywords": [
        "gene ontology",
        " go",
        " biology",
        " enrichment",
        " bioinformatics",
        " computational biology"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "6c9440206edd76fbe1cd6c64b70edfb1e7fb698b3a80eac19334febb12a80538",
                "md5": "2af501a9200244709c77534caa406b8c",
                "sha256": "26a8a732dac0db6e7ee46fcb9dc7ca90e84e13593e986b9cde64bc65ef4ae26d"
            },
            "downloads": -1,
            "filename": "gseapy-1.1.3-cp310-cp310-macosx_11_0_arm64.whl",
            "has_sig": false,
            "md5_digest": "2af501a9200244709c77534caa406b8c",
            "packagetype": "bdist_wheel",
            "python_version": "cp310",
            "requires_python": ">=3.7",
            "size": 495100,
            "upload_time": "2024-05-08T18:10:30",
            "upload_time_iso_8601": "2024-05-08T18:10:30.253684Z",
            "url": "https://files.pythonhosted.org/packages/6c/94/40206edd76fbe1cd6c64b70edfb1e7fb698b3a80eac19334febb12a80538/gseapy-1.1.3-cp310-cp310-macosx_11_0_arm64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "37224f3a412b37c566127ddefb0664819796d57628a08bd0e8b8dc3da49b8be9",
                "md5": "1353de9ad857c520b1c0c11fd4991c90",
                "sha256": "3e64d7d06d33a585c5221478c7e5625efbd21dcd5b16e0e96304f2aa01693db8"
            },
            "downloads": -1,
            "filename": "gseapy-1.1.3-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl",
            "has_sig": false,
            "md5_digest": "1353de9ad857c520b1c0c11fd4991c90",
            "packagetype": "bdist_wheel",
            "python_version": "cp310",
            "requires_python": ">=3.7",
            "size": 578759,
            "upload_time": "2024-05-08T18:12:13",
            "upload_time_iso_8601": "2024-05-08T18:12:13.592167Z",
            "url": "https://files.pythonhosted.org/packages/37/22/4f3a412b37c566127ddefb0664819796d57628a08bd0e8b8dc3da49b8be9/gseapy-1.1.3-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "42eeb43d664c76d245d7b4df365a30dc434e4042c22cbd79f3887efdf57f4818",
                "md5": "4ae9062a4fed5f2bcb399cf81e9ca85f",
                "sha256": "b499a7ed044f4be1fc9ae12ef22e65d759301b3644379203f8208d883e553b4c"
            },
            "downloads": -1,
            "filename": "gseapy-1.1.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
            "has_sig": false,
            "md5_digest": "4ae9062a4fed5f2bcb399cf81e9ca85f",
            "packagetype": "bdist_wheel",
            "python_version": "cp310",
            "requires_python": ">=3.7",
            "size": 552947,
            "upload_time": "2024-05-08T18:12:15",
            "upload_time_iso_8601": "2024-05-08T18:12:15.567958Z",
            "url": "https://files.pythonhosted.org/packages/42/ee/b43d664c76d245d7b4df365a30dc434e4042c22cbd79f3887efdf57f4818/gseapy-1.1.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "a066f96a5e2c5467900513602f3a41e85178cd94614ceb56c7b58c7f6e8e48c0",
                "md5": "3a0a4cbc09ceaf11869f92e51378b1ca",
                "sha256": "57d1b299107c957aeaac05f5acd45b5c6a92b94a27d3ed5695e86661868c2572"
            },
            "downloads": -1,
            "filename": "gseapy-1.1.3-cp310-cp310-win32.whl",
            "has_sig": false,
            "md5_digest": "3a0a4cbc09ceaf11869f92e51378b1ca",
            "packagetype": "bdist_wheel",
            "python_version": "cp310",
            "requires_python": ">=3.7",
            "size": 360267,
            "upload_time": "2024-05-08T18:12:42",
            "upload_time_iso_8601": "2024-05-08T18:12:42.013835Z",
            "url": "https://files.pythonhosted.org/packages/a0/66/f96a5e2c5467900513602f3a41e85178cd94614ceb56c7b58c7f6e8e48c0/gseapy-1.1.3-cp310-cp310-win32.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "b6009b9cbe3a186f654be4c28fb5a2eeb13f09a005ab6d95e7cc4cc9e8a093fd",
                "md5": "ab0f5e3c9bed5832ca9a1c9d37c9759e",
                "sha256": "c153d0e25863547f2f6004937260b8b6c84e0efa3e213abd7251acb1421b4e1f"
            },
            "downloads": -1,
            "filename": "gseapy-1.1.3-cp310-cp310-win_amd64.whl",
            "has_sig": false,
            "md5_digest": "ab0f5e3c9bed5832ca9a1c9d37c9759e",
            "packagetype": "bdist_wheel",
            "python_version": "cp310",
            "requires_python": ">=3.7",
            "size": 383982,
            "upload_time": "2024-05-08T18:12:53",
            "upload_time_iso_8601": "2024-05-08T18:12:53.287471Z",
            "url": "https://files.pythonhosted.org/packages/b6/00/9b9cbe3a186f654be4c28fb5a2eeb13f09a005ab6d95e7cc4cc9e8a093fd/gseapy-1.1.3-cp310-cp310-win_amd64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "0583af9cc9b70a65b1c2946c701d8d8ae1a2a605ccbd89c92d673e267f19aef9",
                "md5": "fe1aa027e64c99c2e7afc68485f553e0",
                "sha256": "c56f03710cf7f35ab3df562af2a3054d9935bf077f12ee1204300baa35b20e32"
            },
            "downloads": -1,
            "filename": "gseapy-1.1.3-cp311-cp311-macosx_11_0_arm64.whl",
            "has_sig": false,
            "md5_digest": "fe1aa027e64c99c2e7afc68485f553e0",
            "packagetype": "bdist_wheel",
            "python_version": "cp311",
            "requires_python": ">=3.7",
            "size": 495098,
            "upload_time": "2024-05-08T18:10:32",
            "upload_time_iso_8601": "2024-05-08T18:10:32.706825Z",
            "url": "https://files.pythonhosted.org/packages/05/83/af9cc9b70a65b1c2946c701d8d8ae1a2a605ccbd89c92d673e267f19aef9/gseapy-1.1.3-cp311-cp311-macosx_11_0_arm64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "28e0206be2a8f0439d59247e6df8341b232e5244fe248adf9e64717720402658",
                "md5": "65ebad725918258d31cf3114b4878f49",
                "sha256": "1d7279fb6a077aba3e61e3bf696d1d65753bb53b4114df7a2a5666ef8a1cee8a"
            },
            "downloads": -1,
            "filename": "gseapy-1.1.3-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl",
            "has_sig": false,
            "md5_digest": "65ebad725918258d31cf3114b4878f49",
            "packagetype": "bdist_wheel",
            "python_version": "cp311",
            "requires_python": ">=3.7",
            "size": 578759,
            "upload_time": "2024-05-08T18:12:17",
            "upload_time_iso_8601": "2024-05-08T18:12:17.590070Z",
            "url": "https://files.pythonhosted.org/packages/28/e0/206be2a8f0439d59247e6df8341b232e5244fe248adf9e64717720402658/gseapy-1.1.3-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "73be6fc692906bd7ea91a277d000e655d60a4567f7d3e70e0a7864c565920ff4",
                "md5": "d54da9abb80fcdc99fea80198588c1f4",
                "sha256": "1e25ff23ad670fc3e643814c9dd06e5d9924549c46b579e3a426025fd6aadf19"
            },
            "downloads": -1,
            "filename": "gseapy-1.1.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
            "has_sig": false,
            "md5_digest": "d54da9abb80fcdc99fea80198588c1f4",
            "packagetype": "bdist_wheel",
            "python_version": "cp311",
            "requires_python": ">=3.7",
            "size": 552947,
            "upload_time": "2024-05-08T18:12:19",
            "upload_time_iso_8601": "2024-05-08T18:12:19.824165Z",
            "url": "https://files.pythonhosted.org/packages/73/be/6fc692906bd7ea91a277d000e655d60a4567f7d3e70e0a7864c565920ff4/gseapy-1.1.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "ff5c2961e949041c7a3a7ebb091aa8dd9cf41f12f4c73fe2ed0ee3ea3462a180",
                "md5": "7187b63f164de68b75263be3a7052b59",
                "sha256": "dbe2cdf67dcf085e073de65d698fa6b7210fc38ad2cb615bfe4efba2abfb3e56"
            },
            "downloads": -1,
            "filename": "gseapy-1.1.3-cp311-cp311-win32.whl",
            "has_sig": false,
            "md5_digest": "7187b63f164de68b75263be3a7052b59",
            "packagetype": "bdist_wheel",
            "python_version": "cp311",
            "requires_python": ">=3.7",
            "size": 360268,
            "upload_time": "2024-05-08T18:12:43",
            "upload_time_iso_8601": "2024-05-08T18:12:43.871459Z",
            "url": "https://files.pythonhosted.org/packages/ff/5c/2961e949041c7a3a7ebb091aa8dd9cf41f12f4c73fe2ed0ee3ea3462a180/gseapy-1.1.3-cp311-cp311-win32.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "fe2b473ca4130ae7b60bbdf1c70cef5944d79eb5971e26925069f40e3aa3ee97",
                "md5": "969f82a893eaaa6c012c7b9749216147",
                "sha256": "6d04bfe7e6fdcb2b35103d7432b0c03e31d8017824ffa6e1f7d232d1154dcc5b"
            },
            "downloads": -1,
            "filename": "gseapy-1.1.3-cp311-cp311-win_amd64.whl",
            "has_sig": false,
            "md5_digest": "969f82a893eaaa6c012c7b9749216147",
            "packagetype": "bdist_wheel",
            "python_version": "cp311",
            "requires_python": ">=3.7",
            "size": 383983,
            "upload_time": "2024-05-08T18:12:55",
            "upload_time_iso_8601": "2024-05-08T18:12:55.355538Z",
            "url": "https://files.pythonhosted.org/packages/fe/2b/473ca4130ae7b60bbdf1c70cef5944d79eb5971e26925069f40e3aa3ee97/gseapy-1.1.3-cp311-cp311-win_amd64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "b4149a74b80338a4dff6dd86bfac0f82f3dd2e8851fcb2d8d66579edfbf1ff24",
                "md5": "47f775feb98068779e5664999c384992",
                "sha256": "aa551ba1cae055ac8c6b1203a7845317aab30f49d2fb9f6a2cd84d0da1762a5a"
            },
            "downloads": -1,
            "filename": "gseapy-1.1.3-cp312-cp312-macosx_11_0_arm64.whl",
            "has_sig": false,
            "md5_digest": "47f775feb98068779e5664999c384992",
            "packagetype": "bdist_wheel",
            "python_version": "cp312",
            "requires_python": ">=3.7",
            "size": 495210,
            "upload_time": "2024-05-08T18:10:34",
            "upload_time_iso_8601": "2024-05-08T18:10:34.875461Z",
            "url": "https://files.pythonhosted.org/packages/b4/14/9a74b80338a4dff6dd86bfac0f82f3dd2e8851fcb2d8d66579edfbf1ff24/gseapy-1.1.3-cp312-cp312-macosx_11_0_arm64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "6c873e28fb40f3690a1c564e92c27e9b2ff444fe1c03b9ee76517873e36995c7",
                "md5": "83590031d524d9414e31588f41f8a70c",
                "sha256": "2c9c28257b5f8646701a9ac2f2401988187212d4b42b29597985196aa2291263"
            },
            "downloads": -1,
            "filename": "gseapy-1.1.3-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl",
            "has_sig": false,
            "md5_digest": "83590031d524d9414e31588f41f8a70c",
            "packagetype": "bdist_wheel",
            "python_version": "cp312",
            "requires_python": ">=3.7",
            "size": 578739,
            "upload_time": "2024-05-08T18:12:21",
            "upload_time_iso_8601": "2024-05-08T18:12:21.312487Z",
            "url": "https://files.pythonhosted.org/packages/6c/87/3e28fb40f3690a1c564e92c27e9b2ff444fe1c03b9ee76517873e36995c7/gseapy-1.1.3-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "ef45ebac094486fbc8617dc632eb654fa71de3da6b105c09b1eaab75ec772db1",
                "md5": "f38dd3b793864ea679ce5adcbe1d14cc",
                "sha256": "cfea067617a0fa37a6b57a02975e14f96af40ad7c1ccb26e4d69c02689cbdd5e"
            },
            "downloads": -1,
            "filename": "gseapy-1.1.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
            "has_sig": false,
            "md5_digest": "f38dd3b793864ea679ce5adcbe1d14cc",
            "packagetype": "bdist_wheel",
            "python_version": "cp312",
            "requires_python": ">=3.7",
            "size": 552958,
            "upload_time": "2024-05-08T18:12:23",
            "upload_time_iso_8601": "2024-05-08T18:12:23.954052Z",
            "url": "https://files.pythonhosted.org/packages/ef/45/ebac094486fbc8617dc632eb654fa71de3da6b105c09b1eaab75ec772db1/gseapy-1.1.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "4abfcf3adea90ca12f4c33863747db8b4f7333c886e46f3d8a0c05d490a530ee",
                "md5": "fc3554214c0edd46ae140d82cbc51e33",
                "sha256": "59bad66ef313491d6ad24be786243b0bf6327b960c20bfd418437a17292a327b"
            },
            "downloads": -1,
            "filename": "gseapy-1.1.3-cp312-cp312-win32.whl",
            "has_sig": false,
            "md5_digest": "fc3554214c0edd46ae140d82cbc51e33",
            "packagetype": "bdist_wheel",
            "python_version": "cp312",
            "requires_python": ">=3.7",
            "size": 360259,
            "upload_time": "2024-05-08T18:12:45",
            "upload_time_iso_8601": "2024-05-08T18:12:45.738104Z",
            "url": "https://files.pythonhosted.org/packages/4a/bf/cf3adea90ca12f4c33863747db8b4f7333c886e46f3d8a0c05d490a530ee/gseapy-1.1.3-cp312-cp312-win32.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "e7da8e89d70c3c0230adf7ab26199b425c35c533018433555e81e6e016f36e7b",
                "md5": "493a694a5e8f6b15b84147f9fbf279c6",
                "sha256": "6e92e5c4bc35b77819026466c343161ffd6ad926fb9a6dea1f2b50ac32aa090e"
            },
            "downloads": -1,
            "filename": "gseapy-1.1.3-cp312-cp312-win_amd64.whl",
            "has_sig": false,
            "md5_digest": "493a694a5e8f6b15b84147f9fbf279c6",
            "packagetype": "bdist_wheel",
            "python_version": "cp312",
            "requires_python": ">=3.7",
            "size": 383984,
            "upload_time": "2024-05-08T18:12:58",
            "upload_time_iso_8601": "2024-05-08T18:12:58.907740Z",
            "url": "https://files.pythonhosted.org/packages/e7/da/8e89d70c3c0230adf7ab26199b425c35c533018433555e81e6e016f36e7b/gseapy-1.1.3-cp312-cp312-win_amd64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "8986c7dc60a626e951b2f29175be93f78b3b64dd4aa06788e66c7153212b4fbb",
                "md5": "beb4430723e0fb4896a37ab8cf3cc0e5",
                "sha256": "a96917b7a25531486567eec3f56b4058ea749ab7eb026e98dcbb672f5fefff2b"
            },
            "downloads": -1,
            "filename": "gseapy-1.1.3-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl",
            "has_sig": false,
            "md5_digest": "beb4430723e0fb4896a37ab8cf3cc0e5",
            "packagetype": "bdist_wheel",
            "python_version": "cp37",
            "requires_python": ">=3.7",
            "size": 578685,
            "upload_time": "2024-05-08T18:12:25",
            "upload_time_iso_8601": "2024-05-08T18:12:25.662776Z",
            "url": "https://files.pythonhosted.org/packages/89/86/c7dc60a626e951b2f29175be93f78b3b64dd4aa06788e66c7153212b4fbb/gseapy-1.1.3-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "a5c599e27a018a43a0ba06ee1526e73f1bfcd63a958a6bbad6fcaba58bf60507",
                "md5": "f8b7e9c67ef215656995c5c5aa430353",
                "sha256": "571c7f44dc785de6f82135d08218ec871ea86d4362945ec4c94cf76e4173a2bf"
            },
            "downloads": -1,
            "filename": "gseapy-1.1.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
            "has_sig": false,
            "md5_digest": "f8b7e9c67ef215656995c5c5aa430353",
            "packagetype": "bdist_wheel",
            "python_version": "cp37",
            "requires_python": ">=3.7",
            "size": 552421,
            "upload_time": "2024-05-08T18:12:28",
            "upload_time_iso_8601": "2024-05-08T18:12:28.924068Z",
            "url": "https://files.pythonhosted.org/packages/a5/c5/99e27a018a43a0ba06ee1526e73f1bfcd63a958a6bbad6fcaba58bf60507/gseapy-1.1.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "1011ee45c986c3707810a308e2023056d95ef1e23562ed2820177f7189b05d98",
                "md5": "ed28d3a222be8fb70313da569ef2baa9",
                "sha256": "4fc10abfe1502a4d28912f18e1d9d83c9ac1cb65dd32671c4e14106b8cad6384"
            },
            "downloads": -1,
            "filename": "gseapy-1.1.3-cp37-cp37m-win32.whl",
            "has_sig": false,
            "md5_digest": "ed28d3a222be8fb70313da569ef2baa9",
            "packagetype": "bdist_wheel",
            "python_version": "cp37",
            "requires_python": ">=3.7",
            "size": 359609,
            "upload_time": "2024-05-08T18:12:47",
            "upload_time_iso_8601": "2024-05-08T18:12:47.645730Z",
            "url": "https://files.pythonhosted.org/packages/10/11/ee45c986c3707810a308e2023056d95ef1e23562ed2820177f7189b05d98/gseapy-1.1.3-cp37-cp37m-win32.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "68fe52e131070b1dc75d79fd05d5c14194660d0445d3d88fb455b107c3985539",
                "md5": "a67c4ad7a971d175c954838278229419",
                "sha256": "babee7d28f3e8eff5fe638f3c31c0b2f660565f2c0463d23a05c25801792a505"
            },
            "downloads": -1,
            "filename": "gseapy-1.1.3-cp37-cp37m-win_amd64.whl",
            "has_sig": false,
            "md5_digest": "a67c4ad7a971d175c954838278229419",
            "packagetype": "bdist_wheel",
            "python_version": "cp37",
            "requires_python": ">=3.7",
            "size": 383323,
            "upload_time": "2024-05-08T18:13:02",
            "upload_time_iso_8601": "2024-05-08T18:13:02.604319Z",
            "url": "https://files.pythonhosted.org/packages/68/fe/52e131070b1dc75d79fd05d5c14194660d0445d3d88fb455b107c3985539/gseapy-1.1.3-cp37-cp37m-win_amd64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "73b8825f6818450dd89b2a227d88672de991a70fff729977521df5c849545a56",
                "md5": "3f4a42a865ce1777a4ea51fc1331b5a1",
                "sha256": "74c55dd30a3d9a644d2f85b7fe1c77c5db596d5f7bdb03be8ff5b0fd7be403ea"
            },
            "downloads": -1,
            "filename": "gseapy-1.1.3-cp38-cp38-macosx_11_0_arm64.whl",
            "has_sig": false,
            "md5_digest": "3f4a42a865ce1777a4ea51fc1331b5a1",
            "packagetype": "bdist_wheel",
            "python_version": "cp38",
            "requires_python": ">=3.7",
            "size": 494466,
            "upload_time": "2024-05-08T18:10:37",
            "upload_time_iso_8601": "2024-05-08T18:10:37.074536Z",
            "url": "https://files.pythonhosted.org/packages/73/b8/825f6818450dd89b2a227d88672de991a70fff729977521df5c849545a56/gseapy-1.1.3-cp38-cp38-macosx_11_0_arm64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "3ec0636bea6b409db47f42af9e8aec370a33572b5f4e8db60c3a926c485b364d",
                "md5": "66865729ff6682140529f4a8a5351dcc",
                "sha256": "41b02c24aaa5a24a05b964f9912f5fd73cfbe6c3c65fa9d86022cf209edea9ba"
            },
            "downloads": -1,
            "filename": "gseapy-1.1.3-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl",
            "has_sig": false,
            "md5_digest": "66865729ff6682140529f4a8a5351dcc",
            "packagetype": "bdist_wheel",
            "python_version": "cp38",
            "requires_python": ">=3.7",
            "size": 578941,
            "upload_time": "2024-05-08T18:12:30",
            "upload_time_iso_8601": "2024-05-08T18:12:30.587463Z",
            "url": "https://files.pythonhosted.org/packages/3e/c0/636bea6b409db47f42af9e8aec370a33572b5f4e8db60c3a926c485b364d/gseapy-1.1.3-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "5f90dbc0173575f78467860df5dbd84bdc8dbebd46dcb2ce9a3836adffc8e576",
                "md5": "ae3fb17d6a0b0a4c363a463815dfdfb2",
                "sha256": "543f39ed6d3b3894db89ddea20698e58462528e33c73b41f084987388624dffa"
            },
            "downloads": -1,
            "filename": "gseapy-1.1.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
            "has_sig": false,
            "md5_digest": "ae3fb17d6a0b0a4c363a463815dfdfb2",
            "packagetype": "bdist_wheel",
            "python_version": "cp38",
            "requires_python": ">=3.7",
            "size": 552341,
            "upload_time": "2024-05-08T18:12:32",
            "upload_time_iso_8601": "2024-05-08T18:12:32.002305Z",
            "url": "https://files.pythonhosted.org/packages/5f/90/dbc0173575f78467860df5dbd84bdc8dbebd46dcb2ce9a3836adffc8e576/gseapy-1.1.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "c90b0f46d3208a1e67e6c0c5857057ba097c81dbdee7b2e8aa4540b2c94fde8a",
                "md5": "ef6555cd7548381a69f32a0a587cecd1",
                "sha256": "7b2d882b337a3e32d13f369b770c0d09e48e8ede12682b81f9327206c5558e85"
            },
            "downloads": -1,
            "filename": "gseapy-1.1.3-cp38-cp38-win32.whl",
            "has_sig": false,
            "md5_digest": "ef6555cd7548381a69f32a0a587cecd1",
            "packagetype": "bdist_wheel",
            "python_version": "cp38",
            "requires_python": ">=3.7",
            "size": 359599,
            "upload_time": "2024-05-08T18:12:54",
            "upload_time_iso_8601": "2024-05-08T18:12:54.087521Z",
            "url": "https://files.pythonhosted.org/packages/c9/0b/0f46d3208a1e67e6c0c5857057ba097c81dbdee7b2e8aa4540b2c94fde8a/gseapy-1.1.3-cp38-cp38-win32.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "d85d3b2836af2bf02c5363e0296c5e57d95691e7b283e109ac0151a19e366496",
                "md5": "152615d6c2fc22684c1981d3d168f8d6",
                "sha256": "796f8015d77476cc1b7b964f6edfcd9cc431e6bcfca25374475ace9852211ff0"
            },
            "downloads": -1,
            "filename": "gseapy-1.1.3-cp38-cp38-win_amd64.whl",
            "has_sig": false,
            "md5_digest": "152615d6c2fc22684c1981d3d168f8d6",
            "packagetype": "bdist_wheel",
            "python_version": "cp38",
            "requires_python": ">=3.7",
            "size": 383338,
            "upload_time": "2024-05-08T18:13:04",
            "upload_time_iso_8601": "2024-05-08T18:13:04.164333Z",
            "url": "https://files.pythonhosted.org/packages/d8/5d/3b2836af2bf02c5363e0296c5e57d95691e7b283e109ac0151a19e366496/gseapy-1.1.3-cp38-cp38-win_amd64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "7f8777f2fd467afc755671aefc80ef72181dac5ee0bb1af8c8af1658be213801",
                "md5": "9270b0646bb882d77d48dce174d63448",
                "sha256": "3863287c6a089f220ff775dcda08bc6a005da39e7e38d9fc5ebc5925fe751b7c"
            },
            "downloads": -1,
            "filename": "gseapy-1.1.3-cp39-cp39-macosx_11_0_arm64.whl",
            "has_sig": false,
            "md5_digest": "9270b0646bb882d77d48dce174d63448",
            "packagetype": "bdist_wheel",
            "python_version": "cp39",
            "requires_python": ">=3.7",
            "size": 495298,
            "upload_time": "2024-05-08T18:10:39",
            "upload_time_iso_8601": "2024-05-08T18:10:39.179808Z",
            "url": "https://files.pythonhosted.org/packages/7f/87/77f2fd467afc755671aefc80ef72181dac5ee0bb1af8c8af1658be213801/gseapy-1.1.3-cp39-cp39-macosx_11_0_arm64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "2b5297c9d4a10fa4c22cde6d9ef2358a10a25d02b71224e5e8668996b907a3cc",
                "md5": "342c5a0ea7d4e539a66d9a63a46b184b",
                "sha256": "abc8ece48510f1b5c44714d6ba389c0b46ab19dd4ae1c4f8ecd24e5c4e221228"
            },
            "downloads": -1,
            "filename": "gseapy-1.1.3-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl",
            "has_sig": false,
            "md5_digest": "342c5a0ea7d4e539a66d9a63a46b184b",
            "packagetype": "bdist_wheel",
            "python_version": "cp39",
            "requires_python": ">=3.7",
            "size": 578826,
            "upload_time": "2024-05-08T18:12:33",
            "upload_time_iso_8601": "2024-05-08T18:12:33.982711Z",
            "url": "https://files.pythonhosted.org/packages/2b/52/97c9d4a10fa4c22cde6d9ef2358a10a25d02b71224e5e8668996b907a3cc/gseapy-1.1.3-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "c98cdd70b5e3a55b6c65121e8baf21c6de8b5d0a16868b68f4aba98947465499",
                "md5": "8aba4d88328f7f18463a15652092eebe",
                "sha256": "ae8b6eb4fe1c5342ee0c6a594e465ba36c6bbabd42c6f66dc9492a9cc9e5db0c"
            },
            "downloads": -1,
            "filename": "gseapy-1.1.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
            "has_sig": false,
            "md5_digest": "8aba4d88328f7f18463a15652092eebe",
            "packagetype": "bdist_wheel",
            "python_version": "cp39",
            "requires_python": ">=3.7",
            "size": 553076,
            "upload_time": "2024-05-08T18:12:35",
            "upload_time_iso_8601": "2024-05-08T18:12:35.308305Z",
            "url": "https://files.pythonhosted.org/packages/c9/8c/dd70b5e3a55b6c65121e8baf21c6de8b5d0a16868b68f4aba98947465499/gseapy-1.1.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "22c6b3bcbdd3670411c4bde1e3e37fb1c8cf811edf58d826cdddc44b04e69104",
                "md5": "81fe7e96b878337a0f934800291d67be",
                "sha256": "7864b5b99243b518454bd9d7288ef0ce63f4101271fa1d070b54658719e068f2"
            },
            "downloads": -1,
            "filename": "gseapy-1.1.3-cp39-cp39-win32.whl",
            "has_sig": false,
            "md5_digest": "81fe7e96b878337a0f934800291d67be",
            "packagetype": "bdist_wheel",
            "python_version": "cp39",
            "requires_python": ">=3.7",
            "size": 360141,
            "upload_time": "2024-05-08T18:12:57",
            "upload_time_iso_8601": "2024-05-08T18:12:57.460526Z",
            "url": "https://files.pythonhosted.org/packages/22/c6/b3bcbdd3670411c4bde1e3e37fb1c8cf811edf58d826cdddc44b04e69104/gseapy-1.1.3-cp39-cp39-win32.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "a1233eb4d6c9a6bba0638d23aec77aa806509c72f1ddc040d998628cce18a189",
                "md5": "9495f4b5877135bb9bf3fac5dace5b79",
                "sha256": "ef2a3fee76284acc78113a121d5ed6279162f60474c3f1402d5b96e5365ae69a"
            },
            "downloads": -1,
            "filename": "gseapy-1.1.3-cp39-cp39-win_amd64.whl",
            "has_sig": false,
            "md5_digest": "9495f4b5877135bb9bf3fac5dace5b79",
            "packagetype": "bdist_wheel",
            "python_version": "cp39",
            "requires_python": ">=3.7",
            "size": 383919,
            "upload_time": "2024-05-08T18:13:06",
            "upload_time_iso_8601": "2024-05-08T18:13:06.040653Z",
            "url": "https://files.pythonhosted.org/packages/a1/23/3eb4d6c9a6bba0638d23aec77aa806509c72f1ddc040d998628cce18a189/gseapy-1.1.3-cp39-cp39-win_amd64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "28c27c03f74682de640b71ba9a9958c5c8a90867b0f4f9ffef2c15702113d47a",
                "md5": "e7ce9b48cf59679b261dbeb456c99278",
                "sha256": "7f9218bb4014a862680d4d3e806e59bec8f81601e876a04495922da81da1b395"
            },
            "downloads": -1,
            "filename": "gseapy-1.1.3.tar.gz",
            "has_sig": false,
            "md5_digest": "e7ce9b48cf59679b261dbeb456c99278",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 106508,
            "upload_time": "2024-05-08T18:06:29",
            "upload_time_iso_8601": "2024-05-08T18:06:29.461419Z",
            "url": "https://files.pythonhosted.org/packages/28/c2/7c03f74682de640b71ba9a9958c5c8a90867b0f4f9ffef2c15702113d47a/gseapy-1.1.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-05-08 18:06:29",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "zqfang",
    "github_project": "gseapy",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "tox": true,
    "lcname": "gseapy"
}
        
Elapsed time: 0.22830s