gum-ai


Namegum-ai JSON
Version 0.1.10 PyPI version JSON
download
home_pagehttps://github.com/GeneralUserModels/gum
SummaryNone
upload_time2025-07-10 07:26:37
maintainerNone
docs_urlNone
authorOmar Shaikh
requires_python>=3.6
licenseMIT
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # GUM (General User Models)

[![arXiv](https://img.shields.io/badge/arXiv-2505.10831-b31b1b.svg)](https://arxiv.org/abs/2505.10831)

General User Models learn about you by observing any interaction you have with your computer. The GUM takes as input any unstructured observation of a user (e.g., device screenshots) and constructs confidence-weighted propositions that capture the user's knowledge and preferences. GUMs introduce an architecture that infers new propositions about a user from multimodal observations, retrieves related propositions for context, and continuously revises existing propositions.

## Documentation

**Please go here for documentation on setting up and using GUMs: [https://generalusermodels.github.io/gum/](https://generalusermodels.github.io/gum/)**

## Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

## License

MIT License

## Citation and Paper

If you're interested in reading more, please check out our paper!

[Creating General User Models from Computer Use](https://arxiv.org/abs/2505.10831)

```bibtex
@misc{shaikh2025creatinggeneralusermodels,
    title={Creating General User Models from Computer Use}, 
    author={Omar Shaikh and Shardul Sapkota and Shan Rizvi and Eric Horvitz and Joon Sung Park and Diyi Yang and Michael S. Bernstein},
    year={2025},
    eprint={2505.10831},
    archivePrefix={arXiv},
    primaryClass={cs.HC},
    url={https://arxiv.org/abs/2505.10831}, 
}
```

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/GeneralUserModels/gum",
    "name": "gum-ai",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": null,
    "keywords": null,
    "author": "Omar Shaikh",
    "author_email": "Omar Shaikh <oshaikh13@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/10/4c/5f8e620432735d654a01774a2cba00300ac97710a5903c422b58aca02787/gum_ai-0.1.10.tar.gz",
    "platform": null,
    "description": "# GUM (General User Models)\n\n[![arXiv](https://img.shields.io/badge/arXiv-2505.10831-b31b1b.svg)](https://arxiv.org/abs/2505.10831)\n\nGeneral User Models learn about you by observing any interaction you have with your computer. The GUM takes as input any unstructured observation of a user (e.g., device screenshots) and constructs confidence-weighted propositions that capture the user's knowledge and preferences. GUMs introduce an architecture that infers new propositions about a user from multimodal observations, retrieves related propositions for context, and continuously revises existing propositions.\n\n## Documentation\n\n**Please go here for documentation on setting up and using GUMs: [https://generalusermodels.github.io/gum/](https://generalusermodels.github.io/gum/)**\n\n## Contributing\n\nContributions are welcome! Please feel free to submit a Pull Request.\n\n## License\n\nMIT License\n\n## Citation and Paper\n\nIf you're interested in reading more, please check out our paper!\n\n[Creating General User Models from Computer Use](https://arxiv.org/abs/2505.10831)\n\n```bibtex\n@misc{shaikh2025creatinggeneralusermodels,\n    title={Creating General User Models from Computer Use}, \n    author={Omar Shaikh and Shardul Sapkota and Shan Rizvi and Eric Horvitz and Joon Sung Park and Diyi Yang and Michael S. Bernstein},\n    year={2025},\n    eprint={2505.10831},\n    archivePrefix={arXiv},\n    primaryClass={cs.HC},\n    url={https://arxiv.org/abs/2505.10831}, \n}\n```\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": null,
    "version": "0.1.10",
    "project_urls": {
        "Homepage": "https://github.com/GeneralUserModels/gum"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "2b2f28e6d8df7b9dfcd52fd5fd3d38eacce818439a79f5ae8db519c8cbd73cb4",
                "md5": "bdc2bd970e036490a586adae5a489752",
                "sha256": "b606b32a7eb7b19e5501ae951af958f174c03f9dfcf87852fffb0af6de669d05"
            },
            "downloads": -1,
            "filename": "gum_ai-0.1.10-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "bdc2bd970e036490a586adae5a489752",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6",
            "size": 27823,
            "upload_time": "2025-07-10T07:26:35",
            "upload_time_iso_8601": "2025-07-10T07:26:35.339274Z",
            "url": "https://files.pythonhosted.org/packages/2b/2f/28e6d8df7b9dfcd52fd5fd3d38eacce818439a79f5ae8db519c8cbd73cb4/gum_ai-0.1.10-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "104c5f8e620432735d654a01774a2cba00300ac97710a5903c422b58aca02787",
                "md5": "79a8d1ea54d68117d834d384cce13dc7",
                "sha256": "bd2caee83059b8bceca4641b5a85a96d1da12f1fd57905a11c36f7d09207748a"
            },
            "downloads": -1,
            "filename": "gum_ai-0.1.10.tar.gz",
            "has_sig": false,
            "md5_digest": "79a8d1ea54d68117d834d384cce13dc7",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 25983,
            "upload_time": "2025-07-10T07:26:37",
            "upload_time_iso_8601": "2025-07-10T07:26:37.307885Z",
            "url": "https://files.pythonhosted.org/packages/10/4c/5f8e620432735d654a01774a2cba00300ac97710a5903c422b58aca02787/gum_ai-0.1.10.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-10 07:26:37",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "GeneralUserModels",
    "github_project": "gum",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "gum-ai"
}
        
Elapsed time: 2.67355s