# gurobi-logtools
[![PyPI](https://img.shields.io/pypi/v/gurobi-logtools?label=PyPI)](https://pypi.python.org/pypi/gurobi-logtools)
[![License](https://img.shields.io/github/license/Gurobi/gurobi-logtools?color=blue&label=License)](https://github.com/Gurobi/gurobi-logtools/blob/master/LICENSE)
[![Test Python Package](https://github.com/Gurobi/gurobi-logtools/actions/workflows/python-tox.yml/badge.svg?branch=master)](https://github.com/Gurobi/gurobi-logtools/actions/workflows/python-tox.yml)
Extract information from Gurobi log files and generate [pandas DataFrames](https://pandas.pydata.org/) or Excel worksheets for further processing. Also includes a wrapper for out-of-the-box interactive visualizations using the plotting library [Plotly](https://plotly.com/python/).
> [!NOTE]
> We have renamed the project to `gurobi-logtools`, so please also adapt the import statement accordingly:
>
> `import gurobi_logtools as glt`
![performance plot](https://github.com/Gurobi/gurobi-logtools/raw/master/assets/performance-plot.png)
# Installation
```
python -m pip install gurobi-logtools
```
It is recommended to prepend the `pip install` command with `python -m` to ensure that the package is installed using the correct Python version currently active in your environment.
See [CHANGELOG](https://github.com/Gurobi/gurobi-logtools/blob/master/CHANGELOG.md) for added, removed or fixed functionality.
# Usage
First, you need a set of Gurobi log files to compare, e.g.,
- results from several model instances
- comparisons of different parameter settings
- performance variability experiments involving multiple random seed runs
- ...
You may also use the provided [gurobi-logtools.ipynb notebook](https://github.com/Gurobi/gurobi-logtools/blob/master/gurobi-logtools.ipynb) with the [example data set](https://github.com/Gurobi/gurobi-logtools/tree/master/data) to get started.
Additionally, there is a [Gurobi TechTalk demonstrating how to use it (YouTube)](https://youtu.be/wbg4Zr_A1s8):
[![](https://github.com/Gurobi/gurobi-logtools/raw/master/assets/youtube-thumbnail.png)](https://youtu.be/wbg4Zr_A1s8)
## Pandas/Plotly
1. parse log files:
```Python
import gurobi_logtools as glt
results = glt.parse(["run1/*.log", "run2/*.log"])
summary = results.summary()
nodelog_progress = results.progress("nodelog")
```
Depending on your requirements, you may need to filter or modify the resulting DataFrames.
2. draw interactive charts, preferably in a [Jupyter Notebook](https://jupyter.org/):
- final results from the individual runs:
```Python
glt.plot(summary, type="box")
```
- progress charts for the individual runs:
```Python
glt.plot(nodelog_progress, y="Gap", color="Log", type="line")
```
- progress of the norel heuristic (note, the time recorded here is since the start of norel, and does not include presolve + read time):
```Python
glt.plot(results.progress("norel"), x="Time", y="Incumbent", color="Log", type="line")
```
These are just examples using the [Plotly Python library](https://plotly.com/python/) - of course, any other plotting library of your choice can be used to work with these DataFrames.
## Excel
Convert your log files to Excel worksheets right on the command-line:
```
python -m gurobi_logtools myrun.xlsx data/*.log
```
List all available options and how to use the command-line tool:
```
python -m gurobi_logtools --help
```
## Rename log files
The command line tool can also rename log files according to the parameters set and model solved in a given run. This is useful if your log files do not have a consistent naming scheme, or if multiple runs are logged per file and you want to extract the individual runs.
For example:
```
python -m gurobi_logtools --write-to-dir nicenames summary.xlsx tests/assets/combined/*.log
```
separates logs for individual runs in the input files and writes copies to the 'nicenames' folder with a consistent naming scheme:
```
> ls nicenames
912-MIPFocus1-Presolve1-TimeLimit600-glass4-0.log
912-MIPFocus1-Presolve1-TimeLimit600-glass4-1.log
912-MIPFocus1-Presolve1-TimeLimit600-glass4-2.log
912-MIPFocus2-Presolve1-TimeLimit600-glass4-0.log
912-MIPFocus2-Presolve1-TimeLimit600-glass4-1.log
912-MIPFocus2-Presolve1-TimeLimit600-glass4-2.log
912-Presolve1-TimeLimit600-glass4-0.log
912-Presolve1-TimeLimit600-glass4-1.log
912-Presolve1-TimeLimit600-glass4-2.log
```
Raw data
{
"_id": null,
"home_page": "https://github.com/Gurobi/gurobi-logtools",
"name": "gurobi-logtools",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": null,
"author": "Gurobi Optimization, LLC",
"author_email": "support@gurobi.com",
"download_url": "https://files.pythonhosted.org/packages/b3/40/43a458c821f50a4cdfa4d273d8dce421313496086629acb3a132e197a36f/gurobi_logtools-3.1.0.tar.gz",
"platform": "any",
"description": "# gurobi-logtools\n\n[![PyPI](https://img.shields.io/pypi/v/gurobi-logtools?label=PyPI)](https://pypi.python.org/pypi/gurobi-logtools)\n[![License](https://img.shields.io/github/license/Gurobi/gurobi-logtools?color=blue&label=License)](https://github.com/Gurobi/gurobi-logtools/blob/master/LICENSE)\n[![Test Python Package](https://github.com/Gurobi/gurobi-logtools/actions/workflows/python-tox.yml/badge.svg?branch=master)](https://github.com/Gurobi/gurobi-logtools/actions/workflows/python-tox.yml)\n\nExtract information from Gurobi log files and generate [pandas DataFrames](https://pandas.pydata.org/) or Excel worksheets for further processing. Also includes a wrapper for out-of-the-box interactive visualizations using the plotting library [Plotly](https://plotly.com/python/).\n\n> [!NOTE]\n> We have renamed the project to `gurobi-logtools`, so please also adapt the import statement accordingly:\n>\n> `import gurobi_logtools as glt`\n\n![performance plot](https://github.com/Gurobi/gurobi-logtools/raw/master/assets/performance-plot.png)\n\n# Installation\n\n```\npython -m pip install gurobi-logtools\n```\n\nIt is recommended to prepend the `pip install` command with `python -m` to ensure that the package is installed using the correct Python version currently active in your environment.\n\nSee [CHANGELOG](https://github.com/Gurobi/gurobi-logtools/blob/master/CHANGELOG.md) for added, removed or fixed functionality.\n\n# Usage\n\nFirst, you need a set of Gurobi log files to compare, e.g.,\n - results from several model instances\n - comparisons of different parameter settings\n - performance variability experiments involving multiple random seed runs\n - ...\n\nYou may also use the provided [gurobi-logtools.ipynb notebook](https://github.com/Gurobi/gurobi-logtools/blob/master/gurobi-logtools.ipynb) with the [example data set](https://github.com/Gurobi/gurobi-logtools/tree/master/data) to get started.\nAdditionally, there is a [Gurobi TechTalk demonstrating how to use it (YouTube)](https://youtu.be/wbg4Zr_A1s8):\n\n[![](https://github.com/Gurobi/gurobi-logtools/raw/master/assets/youtube-thumbnail.png)](https://youtu.be/wbg4Zr_A1s8)\n\n## Pandas/Plotly\n1. parse log files:\n ```Python\n import gurobi_logtools as glt\n\n results = glt.parse([\"run1/*.log\", \"run2/*.log\"])\n summary = results.summary()\n nodelog_progress = results.progress(\"nodelog\")\n ```\n Depending on your requirements, you may need to filter or modify the resulting DataFrames.\n\n2. draw interactive charts, preferably in a [Jupyter Notebook](https://jupyter.org/):\n\n - final results from the individual runs:\n ```Python\n glt.plot(summary, type=\"box\")\n ```\n\n - progress charts for the individual runs:\n ```Python\n glt.plot(nodelog_progress, y=\"Gap\", color=\"Log\", type=\"line\")\n ```\n\n - progress of the norel heuristic (note, the time recorded here is since the start of norel, and does not include presolve + read time):\n ```Python\n glt.plot(results.progress(\"norel\"), x=\"Time\", y=\"Incumbent\", color=\"Log\", type=\"line\")\n ```\n\n These are just examples using the [Plotly Python library](https://plotly.com/python/) - of course, any other plotting library of your choice can be used to work with these DataFrames.\n\n## Excel\nConvert your log files to Excel worksheets right on the command-line:\n\n```\npython -m gurobi_logtools myrun.xlsx data/*.log\n```\n\nList all available options and how to use the command-line tool:\n\n```\npython -m gurobi_logtools --help\n```\n\n## Rename log files\nThe command line tool can also rename log files according to the parameters set and model solved in a given run. This is useful if your log files do not have a consistent naming scheme, or if multiple runs are logged per file and you want to extract the individual runs.\n\nFor example:\n\n```\npython -m gurobi_logtools --write-to-dir nicenames summary.xlsx tests/assets/combined/*.log\n```\n\nseparates logs for individual runs in the input files and writes copies to the 'nicenames' folder with a consistent naming scheme:\n\n```\n> ls nicenames\n912-MIPFocus1-Presolve1-TimeLimit600-glass4-0.log\n912-MIPFocus1-Presolve1-TimeLimit600-glass4-1.log\n912-MIPFocus1-Presolve1-TimeLimit600-glass4-2.log\n912-MIPFocus2-Presolve1-TimeLimit600-glass4-0.log\n912-MIPFocus2-Presolve1-TimeLimit600-glass4-1.log\n912-MIPFocus2-Presolve1-TimeLimit600-glass4-2.log\n912-Presolve1-TimeLimit600-glass4-0.log\n912-Presolve1-TimeLimit600-glass4-1.log\n912-Presolve1-TimeLimit600-glass4-2.log\n```\n",
"bugtrack_url": null,
"license": "Apache-2.0",
"summary": "Gurobi log file tools for parsing and exploring data",
"version": "3.1.0",
"project_urls": {
"Homepage": "https://github.com/Gurobi/gurobi-logtools"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "f4bb6a5f5e56d360ff959302cd24002a2efca290e07bab63512c95cda1c71883",
"md5": "534a814484575b81c8615582a6a4c280",
"sha256": "350c1168a4a39635f1ce0444946acb10010cd2f25a7ec4bb1e6897d7f213a470"
},
"downloads": -1,
"filename": "gurobi_logtools-3.1.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "534a814484575b81c8615582a6a4c280",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 53547,
"upload_time": "2024-07-25T10:46:42",
"upload_time_iso_8601": "2024-07-25T10:46:42.693000Z",
"url": "https://files.pythonhosted.org/packages/f4/bb/6a5f5e56d360ff959302cd24002a2efca290e07bab63512c95cda1c71883/gurobi_logtools-3.1.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "b34043a458c821f50a4cdfa4d273d8dce421313496086629acb3a132e197a36f",
"md5": "ba78a574885e51b080eeb39ccc7dca55",
"sha256": "e387a59e29e4a90b2ffac3a042573850871c0b2d426981dc49022a9c5377fd2c"
},
"downloads": -1,
"filename": "gurobi_logtools-3.1.0.tar.gz",
"has_sig": false,
"md5_digest": "ba78a574885e51b080eeb39ccc7dca55",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 27992,
"upload_time": "2024-07-25T10:46:44",
"upload_time_iso_8601": "2024-07-25T10:46:44.179411Z",
"url": "https://files.pythonhosted.org/packages/b3/40/43a458c821f50a4cdfa4d273d8dce421313496086629acb3a132e197a36f/gurobi_logtools-3.1.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-07-25 10:46:44",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "Gurobi",
"github_project": "gurobi-logtools",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"tox": true,
"lcname": "gurobi-logtools"
}