gurobi-optimods


Namegurobi-optimods JSON
Version 2.3.1 PyPI version JSON
download
home_pageNone
SummaryData-driven APIs for common optimization tasks
upload_time2024-11-27 23:11:25
maintainerNone
docs_urlNone
authorNone
requires_python>=3.8
licenseApache-2.0
keywords gurobipy optimization pandas scipy
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            [![PyPI - Version](https://img.shields.io/pypi/v/gurobi-optimods.svg)](https://pypi.org/project/gurobi-optimods)
[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/gurobi-optimods.svg)](https://pypi.org/project/gurobi-optimods)
[![Tests](https://github.com/Gurobi/gurobi-optimods/actions/workflows/test.yml/badge.svg?branch=main)](https://github.com/Gurobi/gurobi-optimods/actions/workflows/test.yml?query=branch%3Amain++)
[![Docs](https://readthedocs.com/projects/gurobi-optimization-gurobi-optimods/badge/?version=stable)](https://gurobi-optimization-gurobi-optimods.readthedocs-hosted.com/en/stable)

# gurobi-optimods: data-driven APIs for common optimization tasks

``gurobi-optimods`` is an open-source Python repository of implemented
optimization use cases, each with clear, informative, and pretty documentation
that explains how to use it and the mathematical model behind it.

## Features

`gurobi-optimods` allows users to:

- quickly apply optimization to solve a specific problem in their field of
  interest via intuitive, data-driven APIs
- learn about the mathematical model behind their use-case through thorough
  documentation
- contribute new mods to grow the library

## Installation

```console
pip install gurobi-optimods
```

## Dependencies

- [gurobipy: Python modelling interface for the Gurobi Optimizer](https://pypi.org/project/gurobipy/)
- [numpy: The fundamental package for scientific computing with Python](https://pypi.org/project/numpy/)
- [scipy: Fundamental algorithms for scientific computing in Python](https://pypi.org/project/scipy/)
- [pandas: powerful Python data analysis toolkit](https://pypi.org/project/pandas/)
- [gurobipy-pandas: Convenience wrapper for building optimization models from pandas data](https://pypi.org/project/gurobipy-pandas/)

## Documentation

Full documentation for `gurobi-optimods` is hosted on [readthedocs](https://gurobi-optimods.readthedocs.io/en/stable).

## License

`gurobi-optimods` is distributed under the terms of the [Apache License 2.0](https://spdx.org/licenses/Apache-2.0.html).

## Contact Us

For questions related to using gurobi-optimods please use the [Gurobi Community Forum](https://support.gurobi.com/hc/en-us/community/topics/10373864542609-GitHub-Projects>).

For reporting bugs, issues and feature requests, specific to `gurobi-optimods`, please [open an issue](https://github.com/Gurobi/gurobi-optimods/issues).

If you encounter issues with Gurobi or `gurobipy` please contact [Gurobi Support](https://support.gurobi.com/hc/en-us).

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "gurobi-optimods",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "gurobipy, optimization, pandas, scipy",
    "author": null,
    "author_email": "Simon Bowly <bowly@gurobi.com>, Robert Luce <luce@gurobi.com>",
    "download_url": "https://files.pythonhosted.org/packages/73/44/97c69f1cb6c7e1c630ca059c7c020e155f4077aa252f43233efc3a94eec4/gurobi_optimods-2.3.1.tar.gz",
    "platform": null,
    "description": "[![PyPI - Version](https://img.shields.io/pypi/v/gurobi-optimods.svg)](https://pypi.org/project/gurobi-optimods)\n[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/gurobi-optimods.svg)](https://pypi.org/project/gurobi-optimods)\n[![Tests](https://github.com/Gurobi/gurobi-optimods/actions/workflows/test.yml/badge.svg?branch=main)](https://github.com/Gurobi/gurobi-optimods/actions/workflows/test.yml?query=branch%3Amain++)\n[![Docs](https://readthedocs.com/projects/gurobi-optimization-gurobi-optimods/badge/?version=stable)](https://gurobi-optimization-gurobi-optimods.readthedocs-hosted.com/en/stable)\n\n# gurobi-optimods: data-driven APIs for common optimization tasks\n\n``gurobi-optimods`` is an open-source Python repository of implemented\noptimization use cases, each with clear, informative, and pretty documentation\nthat explains how to use it and the mathematical model behind it.\n\n## Features\n\n`gurobi-optimods` allows users to:\n\n- quickly apply optimization to solve a specific problem in their field of\n  interest via intuitive, data-driven APIs\n- learn about the mathematical model behind their use-case through thorough\n  documentation\n- contribute new mods to grow the library\n\n## Installation\n\n```console\npip install gurobi-optimods\n```\n\n## Dependencies\n\n- [gurobipy: Python modelling interface for the Gurobi Optimizer](https://pypi.org/project/gurobipy/)\n- [numpy: The fundamental package for scientific computing with Python](https://pypi.org/project/numpy/)\n- [scipy: Fundamental algorithms for scientific computing in Python](https://pypi.org/project/scipy/)\n- [pandas: powerful Python data analysis toolkit](https://pypi.org/project/pandas/)\n- [gurobipy-pandas: Convenience wrapper for building optimization models from pandas data](https://pypi.org/project/gurobipy-pandas/)\n\n## Documentation\n\nFull documentation for `gurobi-optimods` is hosted on [readthedocs](https://gurobi-optimods.readthedocs.io/en/stable).\n\n## License\n\n`gurobi-optimods` is distributed under the terms of the [Apache License 2.0](https://spdx.org/licenses/Apache-2.0.html).\n\n## Contact Us\n\nFor questions related to using gurobi-optimods please use the [Gurobi Community Forum](https://support.gurobi.com/hc/en-us/community/topics/10373864542609-GitHub-Projects>).\n\nFor reporting bugs, issues and feature requests, specific to `gurobi-optimods`, please [open an issue](https://github.com/Gurobi/gurobi-optimods/issues).\n\nIf you encounter issues with Gurobi or `gurobipy` please contact [Gurobi Support](https://support.gurobi.com/hc/en-us).\n",
    "bugtrack_url": null,
    "license": "Apache-2.0",
    "summary": "Data-driven APIs for common optimization tasks",
    "version": "2.3.1",
    "project_urls": null,
    "split_keywords": [
        "gurobipy",
        " optimization",
        " pandas",
        " scipy"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "0b93155dcba870cd28c17ca03ba6af8373dc786038db2268e05ed897438255c7",
                "md5": "c7ccddaad9e62eb64b072f21a09c4116",
                "sha256": "5000175a4354dce7372851998ad09a9cc8de1e82107c4ceb1aebc711307effc2"
            },
            "downloads": -1,
            "filename": "gurobi_optimods-2.3.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "c7ccddaad9e62eb64b072f21a09c4116",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 277928,
            "upload_time": "2024-11-27T23:11:23",
            "upload_time_iso_8601": "2024-11-27T23:11:23.588067Z",
            "url": "https://files.pythonhosted.org/packages/0b/93/155dcba870cd28c17ca03ba6af8373dc786038db2268e05ed897438255c7/gurobi_optimods-2.3.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "734497c69f1cb6c7e1c630ca059c7c020e155f4077aa252f43233efc3a94eec4",
                "md5": "afc658d4369486dfe3cf0ee95b5c0817",
                "sha256": "2a9952f9ddcea4bd6210d11068b5eeaea6e8dfdc9118351082d123e980356d94"
            },
            "downloads": -1,
            "filename": "gurobi_optimods-2.3.1.tar.gz",
            "has_sig": false,
            "md5_digest": "afc658d4369486dfe3cf0ee95b5c0817",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 3897485,
            "upload_time": "2024-11-27T23:11:25",
            "upload_time_iso_8601": "2024-11-27T23:11:25.356781Z",
            "url": "https://files.pythonhosted.org/packages/73/44/97c69f1cb6c7e1c630ca059c7c020e155f4077aa252f43233efc3a94eec4/gurobi_optimods-2.3.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-27 23:11:25",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "gurobi-optimods"
}
        
Elapsed time: 0.39437s