gurobi-optimods


Namegurobi-optimods JSON
Version 2.2.0 PyPI version JSON
download
home_pageNone
SummaryData-driven APIs for common optimization tasks
upload_time2024-07-19 14:16:08
maintainerNone
docs_urlNone
authorNone
requires_python>=3.8
licenseNone
keywords gurobipy optimization pandas scipy
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            [![PyPI - Version](https://img.shields.io/pypi/v/gurobi-optimods.svg)](https://pypi.org/project/gurobi-optimods)
[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/gurobi-optimods.svg)](https://pypi.org/project/gurobi-optimods)
[![Tests](https://github.com/Gurobi/gurobi-optimods/actions/workflows/test.yml/badge.svg?branch=main)](https://github.com/Gurobi/gurobi-optimods/actions/workflows/test.yml?query=branch%3Amain++)
[![Docs](https://readthedocs.com/projects/gurobi-optimization-gurobi-optimods/badge/?version=stable)](https://gurobi-optimization-gurobi-optimods.readthedocs-hosted.com/en/stable)

# gurobi-optimods: data-driven APIs for common optimization tasks

``gurobi-optimods`` is an open-source Python repository of implemented
optimization use cases, each with clear, informative, and pretty documentation
that explains how to use it and the mathematical model behind it.

## Features

`gurobi-optimods` allows users to:

- quickly apply optimization to solve a specific problem in their field of
  interest via intuitive, data-driven APIs
- learn about the mathematical model behind their use-case through thorough
  documentation
- contribute new mods to grow the library

## Installation

```console
pip install gurobi-optimods
```

## Dependencies

- [gurobipy: Python modelling interface for the Gurobi Optimizer](https://pypi.org/project/gurobipy/)
- [numpy: The fundamental package for scientific computing with Python](https://pypi.org/project/numpy/)
- [scipy: Fundamental algorithms for scientific computing in Python](https://pypi.org/project/scipy/)
- [pandas: powerful Python data analysis toolkit](https://pypi.org/project/pandas/)
- [gurobipy-pandas: Convenience wrapper for building optimization models from pandas data](https://pypi.org/project/gurobipy-pandas/)

## Documentation

Full documentation for `gurobi-optimods` is hosted on [readthedocs](https://gurobi-optimods.readthedocs.io/en/stable).

## License

`gurobi-optimods` is distributed under the terms of the [Apache License 2.0](https://spdx.org/licenses/Apache-2.0.html).

## Contact Us

For questions related to using gurobi-optimods please use the [Gurobi Community Forum](https://support.gurobi.com/hc/en-us/community/topics/10373864542609-GitHub-Projects>).

For reporting bugs, issues and feature requests, specific to `gurobi-optimods`, please [open an issue](https://github.com/Gurobi/gurobi-optimods/issues).

If you encounter issues with Gurobi or `gurobipy` please contact [Gurobi Support](https://support.gurobi.com/hc/en-us).

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "gurobi-optimods",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "gurobipy, optimization, pandas, scipy",
    "author": null,
    "author_email": "Simon Bowly <bowly@gurobi.com>, Robert Luce <luce@gurobi.com>",
    "download_url": "https://files.pythonhosted.org/packages/94/46/be7aa34d5a4e2358d6415f37f2cf3da371a061eaecfe255245244aad4e55/gurobi_optimods-2.2.0.tar.gz",
    "platform": null,
    "description": "[![PyPI - Version](https://img.shields.io/pypi/v/gurobi-optimods.svg)](https://pypi.org/project/gurobi-optimods)\n[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/gurobi-optimods.svg)](https://pypi.org/project/gurobi-optimods)\n[![Tests](https://github.com/Gurobi/gurobi-optimods/actions/workflows/test.yml/badge.svg?branch=main)](https://github.com/Gurobi/gurobi-optimods/actions/workflows/test.yml?query=branch%3Amain++)\n[![Docs](https://readthedocs.com/projects/gurobi-optimization-gurobi-optimods/badge/?version=stable)](https://gurobi-optimization-gurobi-optimods.readthedocs-hosted.com/en/stable)\n\n# gurobi-optimods: data-driven APIs for common optimization tasks\n\n``gurobi-optimods`` is an open-source Python repository of implemented\noptimization use cases, each with clear, informative, and pretty documentation\nthat explains how to use it and the mathematical model behind it.\n\n## Features\n\n`gurobi-optimods` allows users to:\n\n- quickly apply optimization to solve a specific problem in their field of\n  interest via intuitive, data-driven APIs\n- learn about the mathematical model behind their use-case through thorough\n  documentation\n- contribute new mods to grow the library\n\n## Installation\n\n```console\npip install gurobi-optimods\n```\n\n## Dependencies\n\n- [gurobipy: Python modelling interface for the Gurobi Optimizer](https://pypi.org/project/gurobipy/)\n- [numpy: The fundamental package for scientific computing with Python](https://pypi.org/project/numpy/)\n- [scipy: Fundamental algorithms for scientific computing in Python](https://pypi.org/project/scipy/)\n- [pandas: powerful Python data analysis toolkit](https://pypi.org/project/pandas/)\n- [gurobipy-pandas: Convenience wrapper for building optimization models from pandas data](https://pypi.org/project/gurobipy-pandas/)\n\n## Documentation\n\nFull documentation for `gurobi-optimods` is hosted on [readthedocs](https://gurobi-optimods.readthedocs.io/en/stable).\n\n## License\n\n`gurobi-optimods` is distributed under the terms of the [Apache License 2.0](https://spdx.org/licenses/Apache-2.0.html).\n\n## Contact Us\n\nFor questions related to using gurobi-optimods please use the [Gurobi Community Forum](https://support.gurobi.com/hc/en-us/community/topics/10373864542609-GitHub-Projects>).\n\nFor reporting bugs, issues and feature requests, specific to `gurobi-optimods`, please [open an issue](https://github.com/Gurobi/gurobi-optimods/issues).\n\nIf you encounter issues with Gurobi or `gurobipy` please contact [Gurobi Support](https://support.gurobi.com/hc/en-us).\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Data-driven APIs for common optimization tasks",
    "version": "2.2.0",
    "project_urls": null,
    "split_keywords": [
        "gurobipy",
        " optimization",
        " pandas",
        " scipy"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "3ac5c5e8c4fc1567fb7243a2485944c1a15b5bfa346760e2f2e0ba37aa88f174",
                "md5": "90442b20462130e05138442ca8262a4f",
                "sha256": "1002117d5806f191cd17b7c094dc873df097eaff287b8a724f85af670c71551e"
            },
            "downloads": -1,
            "filename": "gurobi_optimods-2.2.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "90442b20462130e05138442ca8262a4f",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 275434,
            "upload_time": "2024-07-19T14:16:07",
            "upload_time_iso_8601": "2024-07-19T14:16:07.244896Z",
            "url": "https://files.pythonhosted.org/packages/3a/c5/c5e8c4fc1567fb7243a2485944c1a15b5bfa346760e2f2e0ba37aa88f174/gurobi_optimods-2.2.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "9446be7aa34d5a4e2358d6415f37f2cf3da371a061eaecfe255245244aad4e55",
                "md5": "9947b72c187f6f7751c697d9f3257889",
                "sha256": "6f281e44f9f2d0eda1206c5b6ae00d98131be5e4ec1842ee3765a921221b3f91"
            },
            "downloads": -1,
            "filename": "gurobi_optimods-2.2.0.tar.gz",
            "has_sig": false,
            "md5_digest": "9947b72c187f6f7751c697d9f3257889",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 3894749,
            "upload_time": "2024-07-19T14:16:08",
            "upload_time_iso_8601": "2024-07-19T14:16:08.610879Z",
            "url": "https://files.pythonhosted.org/packages/94/46/be7aa34d5a4e2358d6415f37f2cf3da371a061eaecfe255245244aad4e55/gurobi_optimods-2.2.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-07-19 14:16:08",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "gurobi-optimods"
}
        
Elapsed time: 0.38244s