[![PyPI - Version](https://img.shields.io/pypi/v/gurobi-optimods.svg)](https://pypi.org/project/gurobi-optimods)
[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/gurobi-optimods.svg)](https://pypi.org/project/gurobi-optimods)
[![Tests](https://github.com/Gurobi/gurobi-optimods/actions/workflows/test.yml/badge.svg?branch=main)](https://github.com/Gurobi/gurobi-optimods/actions/workflows/test.yml?query=branch%3Amain++)
[![Docs](https://readthedocs.com/projects/gurobi-optimization-gurobi-optimods/badge/?version=stable)](https://gurobi-optimization-gurobi-optimods.readthedocs-hosted.com/en/stable)
# gurobi-optimods: data-driven APIs for common optimization tasks
``gurobi-optimods`` is an open-source Python repository of implemented
optimization use cases, each with clear, informative, and pretty documentation
that explains how to use it and the mathematical model behind it.
## Features
`gurobi-optimods` allows users to:
- quickly apply optimization to solve a specific problem in their field of
interest via intuitive, data-driven APIs
- learn about the mathematical model behind their use-case through thorough
documentation
- contribute new mods to grow the library
## Installation
```console
pip install gurobi-optimods
```
## Dependencies
- [gurobipy: Python modelling interface for the Gurobi Optimizer](https://pypi.org/project/gurobipy/)
- [numpy: The fundamental package for scientific computing with Python](https://pypi.org/project/numpy/)
- [scipy: Fundamental algorithms for scientific computing in Python](https://pypi.org/project/scipy/)
- [pandas: powerful Python data analysis toolkit](https://pypi.org/project/pandas/)
- [gurobipy-pandas: Convenience wrapper for building optimization models from pandas data](https://pypi.org/project/gurobipy-pandas/)
## Documentation
Full documentation for `gurobi-optimods` is hosted on [readthedocs](https://gurobi-optimods.readthedocs.io/en/stable).
## License
`gurobi-optimods` is distributed under the terms of the [Apache License 2.0](https://spdx.org/licenses/Apache-2.0.html).
## Contact Us
For questions related to using gurobi-optimods please use the [Gurobi Community Forum](https://support.gurobi.com/hc/en-us/community/topics/10373864542609-GitHub-Projects>).
For reporting bugs, issues and feature requests, specific to `gurobi-optimods`, please [open an issue](https://github.com/Gurobi/gurobi-optimods/issues).
If you encounter issues with Gurobi or `gurobipy` please contact [Gurobi Support](https://support.gurobi.com/hc/en-us).
Raw data
{
"_id": null,
"home_page": null,
"name": "gurobi-optimods",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": "gurobipy, optimization, pandas, scipy",
"author": null,
"author_email": "Simon Bowly <bowly@gurobi.com>, Robert Luce <luce@gurobi.com>",
"download_url": "https://files.pythonhosted.org/packages/73/44/97c69f1cb6c7e1c630ca059c7c020e155f4077aa252f43233efc3a94eec4/gurobi_optimods-2.3.1.tar.gz",
"platform": null,
"description": "[![PyPI - Version](https://img.shields.io/pypi/v/gurobi-optimods.svg)](https://pypi.org/project/gurobi-optimods)\n[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/gurobi-optimods.svg)](https://pypi.org/project/gurobi-optimods)\n[![Tests](https://github.com/Gurobi/gurobi-optimods/actions/workflows/test.yml/badge.svg?branch=main)](https://github.com/Gurobi/gurobi-optimods/actions/workflows/test.yml?query=branch%3Amain++)\n[![Docs](https://readthedocs.com/projects/gurobi-optimization-gurobi-optimods/badge/?version=stable)](https://gurobi-optimization-gurobi-optimods.readthedocs-hosted.com/en/stable)\n\n# gurobi-optimods: data-driven APIs for common optimization tasks\n\n``gurobi-optimods`` is an open-source Python repository of implemented\noptimization use cases, each with clear, informative, and pretty documentation\nthat explains how to use it and the mathematical model behind it.\n\n## Features\n\n`gurobi-optimods` allows users to:\n\n- quickly apply optimization to solve a specific problem in their field of\n interest via intuitive, data-driven APIs\n- learn about the mathematical model behind their use-case through thorough\n documentation\n- contribute new mods to grow the library\n\n## Installation\n\n```console\npip install gurobi-optimods\n```\n\n## Dependencies\n\n- [gurobipy: Python modelling interface for the Gurobi Optimizer](https://pypi.org/project/gurobipy/)\n- [numpy: The fundamental package for scientific computing with Python](https://pypi.org/project/numpy/)\n- [scipy: Fundamental algorithms for scientific computing in Python](https://pypi.org/project/scipy/)\n- [pandas: powerful Python data analysis toolkit](https://pypi.org/project/pandas/)\n- [gurobipy-pandas: Convenience wrapper for building optimization models from pandas data](https://pypi.org/project/gurobipy-pandas/)\n\n## Documentation\n\nFull documentation for `gurobi-optimods` is hosted on [readthedocs](https://gurobi-optimods.readthedocs.io/en/stable).\n\n## License\n\n`gurobi-optimods` is distributed under the terms of the [Apache License 2.0](https://spdx.org/licenses/Apache-2.0.html).\n\n## Contact Us\n\nFor questions related to using gurobi-optimods please use the [Gurobi Community Forum](https://support.gurobi.com/hc/en-us/community/topics/10373864542609-GitHub-Projects>).\n\nFor reporting bugs, issues and feature requests, specific to `gurobi-optimods`, please [open an issue](https://github.com/Gurobi/gurobi-optimods/issues).\n\nIf you encounter issues with Gurobi or `gurobipy` please contact [Gurobi Support](https://support.gurobi.com/hc/en-us).\n",
"bugtrack_url": null,
"license": "Apache-2.0",
"summary": "Data-driven APIs for common optimization tasks",
"version": "2.3.1",
"project_urls": null,
"split_keywords": [
"gurobipy",
" optimization",
" pandas",
" scipy"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "0b93155dcba870cd28c17ca03ba6af8373dc786038db2268e05ed897438255c7",
"md5": "c7ccddaad9e62eb64b072f21a09c4116",
"sha256": "5000175a4354dce7372851998ad09a9cc8de1e82107c4ceb1aebc711307effc2"
},
"downloads": -1,
"filename": "gurobi_optimods-2.3.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "c7ccddaad9e62eb64b072f21a09c4116",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 277928,
"upload_time": "2024-11-27T23:11:23",
"upload_time_iso_8601": "2024-11-27T23:11:23.588067Z",
"url": "https://files.pythonhosted.org/packages/0b/93/155dcba870cd28c17ca03ba6af8373dc786038db2268e05ed897438255c7/gurobi_optimods-2.3.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "734497c69f1cb6c7e1c630ca059c7c020e155f4077aa252f43233efc3a94eec4",
"md5": "afc658d4369486dfe3cf0ee95b5c0817",
"sha256": "2a9952f9ddcea4bd6210d11068b5eeaea6e8dfdc9118351082d123e980356d94"
},
"downloads": -1,
"filename": "gurobi_optimods-2.3.1.tar.gz",
"has_sig": false,
"md5_digest": "afc658d4369486dfe3cf0ee95b5c0817",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 3897485,
"upload_time": "2024-11-27T23:11:25",
"upload_time_iso_8601": "2024-11-27T23:11:25.356781Z",
"url": "https://files.pythonhosted.org/packages/73/44/97c69f1cb6c7e1c630ca059c7c020e155f4077aa252f43233efc3a94eec4/gurobi_optimods-2.3.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-11-27 23:11:25",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "gurobi-optimods"
}