gwalk


Namegwalk JSON
Version 3.0.0 PyPI version JSON
download
home_pageNone
SummaryGWALK: Gravitational Wave Approximate LiKelihood
upload_time2025-08-21 00:25:41
maintainerNone
docs_urlNone
authorNone
requires_python>=3.12
licenseMIT License
keywords gravitational wave bayesian inference
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Gravitational Wave Approximate LiKelihood (GWALK)

Library for fitting approximate likelihood functions for Gravitational Wave
    events, with methods applicable in general for 
    modeling sample-based distributions.

Specifically, the Normal Approximate Likelihood (NAL) models
    are optimized, bounded (truncated) multivariate normal distributions.

The non-parametric methods included also include density estimation
    as marginalized Gaussian process estimates.

See the associated data release: https://gitlab.com/xevra/nal-data

See gp-api: https://gitlab.com/xevra/gaussian-process-api

## Citation
```
@misc{https://doi.org/10.48550/arxiv.2205.14154,
  doi = {10.48550/ARXIV.2205.14154},
  url = {https://arxiv.org/abs/2205.14154},
  author = {Delfavero, Vera and O'Shaughnessy, Richard and Wysocki, Daniel and Yelikar, Anjali},
  keywords = {Instrumentation and Methods for Astrophysics (astro-ph.IM), General Relativity and Quantum Cosmology (gr-qc), FOS: Physical sciences, FOS: Physical sciences},
  title = {Compressed Parametric and Non-Parametric Approximations to the Gravitational Wave Likelihood},
  publisher = {arXiv},
  year = {2022},
  copyright = {arXiv.org perpetual, non-exclusive license}
}
```

## Installation:

Method 1:

This will only work with python 3.7-3.9 (newer versions are waiting on cython version to update), and on a computer with cholmod installed (suitesparse, libsuitesparse-dev, etc...).
```
python3 -m pip install gwalk
```

Method 2:

This should work on any computer with anaconda:
```
conda create --name gwalk python=3.9
conda activate gwalk
conda install -c conda-forge scikit-sparse
python3 -m pip install gaussian-process-api
python3 -m pip install --upgrade ipykernel
python3 -m ipykernel install --user --name "gwalk" --display-name "gwalk" # For jupyter 
```


## Contributing

We are open to pull requests. 

If you would like to make a contribution, please explain what changes you are making and why.

## License

[MIT](https://choosealicense.com/licenses/mit)

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "gwalk",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.12",
    "maintainer_email": "\"V. Delfavero\" <xevra86@gmail.com>",
    "keywords": "Gravitational Wave, Bayesian Inference",
    "author": null,
    "author_email": "\"V. Delfavero\" <xevra86@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/a0/43/9c23856ed882923e12afd31cfb71245f4a6328ccbb28b3d994b6ded2f06e/gwalk-3.0.0.tar.gz",
    "platform": null,
    "description": "# Gravitational Wave Approximate LiKelihood (GWALK)\n\nLibrary for fitting approximate likelihood functions for Gravitational Wave\n    events, with methods applicable in general for \n    modeling sample-based distributions.\n\nSpecifically, the Normal Approximate Likelihood (NAL) models\n    are optimized, bounded (truncated) multivariate normal distributions.\n\nThe non-parametric methods included also include density estimation\n    as marginalized Gaussian process estimates.\n\nSee the associated data release: https://gitlab.com/xevra/nal-data\n\nSee gp-api: https://gitlab.com/xevra/gaussian-process-api\n\n## Citation\n```\n@misc{https://doi.org/10.48550/arxiv.2205.14154,\n  doi = {10.48550/ARXIV.2205.14154},\n  url = {https://arxiv.org/abs/2205.14154},\n  author = {Delfavero, Vera and O'Shaughnessy, Richard and Wysocki, Daniel and Yelikar, Anjali},\n  keywords = {Instrumentation and Methods for Astrophysics (astro-ph.IM), General Relativity and Quantum Cosmology (gr-qc), FOS: Physical sciences, FOS: Physical sciences},\n  title = {Compressed Parametric and Non-Parametric Approximations to the Gravitational Wave Likelihood},\n  publisher = {arXiv},\n  year = {2022},\n  copyright = {arXiv.org perpetual, non-exclusive license}\n}\n```\n\n## Installation:\n\nMethod 1:\n\nThis will only work with python 3.7-3.9 (newer versions are waiting on cython version to update), and on a computer with cholmod installed (suitesparse, libsuitesparse-dev, etc...).\n```\npython3 -m pip install gwalk\n```\n\nMethod 2:\n\nThis should work on any computer with anaconda:\n```\nconda create --name gwalk python=3.9\nconda activate gwalk\nconda install -c conda-forge scikit-sparse\npython3 -m pip install gaussian-process-api\npython3 -m pip install --upgrade ipykernel\npython3 -m ipykernel install --user --name \"gwalk\" --display-name \"gwalk\" # For jupyter \n```\n\n\n## Contributing\n\nWe are open to pull requests. \n\nIf you would like to make a contribution, please explain what changes you are making and why.\n\n## License\n\n[MIT](https://choosealicense.com/licenses/mit)\n",
    "bugtrack_url": null,
    "license": "MIT License",
    "summary": "GWALK: Gravitational Wave Approximate LiKelihood",
    "version": "3.0.0",
    "project_urls": {
        "Bug tracker": "https://gitlab.com/xevra/gwalk/issues",
        "Homepage": "https://gitlab.com/xevra/gwalk"
    },
    "split_keywords": [
        "gravitational wave",
        " bayesian inference"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "a0439c23856ed882923e12afd31cfb71245f4a6328ccbb28b3d994b6ded2f06e",
                "md5": "f39ac8e613470d57b6ed80f65c284162",
                "sha256": "381b5ee1d4bb1faa8bae87cdc3e7e95b6d60328a114a47610b62b3c80275f438"
            },
            "downloads": -1,
            "filename": "gwalk-3.0.0.tar.gz",
            "has_sig": false,
            "md5_digest": "f39ac8e613470d57b6ed80f65c284162",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.12",
            "size": 4536271,
            "upload_time": "2025-08-21T00:25:41",
            "upload_time_iso_8601": "2025-08-21T00:25:41.366667Z",
            "url": "https://files.pythonhosted.org/packages/a0/43/9c23856ed882923e12afd31cfb71245f4a6328ccbb28b3d994b6ded2f06e/gwalk-3.0.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-08-21 00:25:41",
    "github": false,
    "gitlab": true,
    "bitbucket": false,
    "codeberg": false,
    "gitlab_user": "xevra",
    "gitlab_project": "gwalk",
    "lcname": "gwalk"
}
        
Elapsed time: 1.81465s