gwr-inversion


Namegwr-inversion JSON
Version 1.0.1 PyPI version JSON
download
home_pagehttps://github.com/petbox-dev/gwr
SummaryGWR Algorithm Numerical Laplace Inversion
upload_time2020-07-24 20:07:41
maintainer
docs_urlNone
authorDavid S. Fulford
requires_python>=3.7
license
keywords laplace inversion transform gwr
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage
            Gaver-Wynn-Rho Algorithm
------------------------

This is a Python reproduction of the Mathematica package that provides the GWR
function, ``NumericalLaplaceInversion.m``.

https://library.wolfram.com/infocenter/MathSource/4738/

This package provides only one function: ``gwr``. The function calculates the
value of the inverse of a Laplace transform at a specified time value,
``Sequence`` of time values, or numpy array of time values.

The Laplace transform should be provided as a function that uses the ``mpmath``
library for a scalar value of the Laplace parameter.  The ``math`` library and
``numpy`` functions do not support multiprecision math and will return invalid
results if they are used.

Simple Example
--------------

.. code-block:: python

    >>> import math
    >>> from gwr_inversion import gwr
    >>> from mpmath import mp

    >>> def lap_ln_fn(s: float):
    ...     # log function
    ...     return -mp.log(s) / s - 0.577216 / s

    >>> gwr(lap_log_fn, time=5.0, M=32)
        mpf('1.6094375773356333')

    >>> math.log(5.0)
    1.6094379124341003


See the notebooks in ``test\`` for other use examples.

The method is described in: Valkó, P.P., and Abate J. 2002. Comparison of
Sequence Accelerators for the Gaver Method of Numerical Laplace Transform
Inversion. *Computers and Mathematics with Application* **48** (3): 629–636.
https://doi.org/10.1016/j.camwa.2002.10.017.

More information on multi-precision inversion can be found in: Valkó, P.P.and
Vajda, S. 2002. Inversion of Noise-Free Laplace Transforms: Towards a
Standardized Set of Test Problems. *Inverse Problems in Engineering* **10** (5):
467-483. https://doi.org/10.1080/10682760290004294.



            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/petbox-dev/gwr",
    "name": "gwr-inversion",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": "",
    "keywords": "laplace,inversion,transform,gwr",
    "author": "David S. Fulford",
    "author_email": "petbox.dev@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/70/13/553039c7307a1a5b5c1fc0523c4d70e505044ba8df91071c12314226881e/gwr-inversion-1.0.1.tar.gz",
    "platform": "",
    "description": "Gaver-Wynn-Rho Algorithm\n------------------------\n\nThis is a Python reproduction of the Mathematica package that provides the GWR\nfunction, ``NumericalLaplaceInversion.m``.\n\nhttps://library.wolfram.com/infocenter/MathSource/4738/\n\nThis package provides only one function: ``gwr``. The function calculates the\nvalue of the inverse of a Laplace transform at a specified time value,\n``Sequence`` of time values, or numpy array of time values.\n\nThe Laplace transform should be provided as a function that uses the ``mpmath``\nlibrary for a scalar value of the Laplace parameter.  The ``math`` library and\n``numpy`` functions do not support multiprecision math and will return invalid\nresults if they are used.\n\nSimple Example\n--------------\n\n.. code-block:: python\n\n    >>> import math\n    >>> from gwr_inversion import gwr\n    >>> from mpmath import mp\n\n    >>> def lap_ln_fn(s: float):\n    ...     # log function\n    ...     return -mp.log(s) / s - 0.577216 / s\n\n    >>> gwr(lap_log_fn, time=5.0, M=32)\n        mpf('1.6094375773356333')\n\n    >>> math.log(5.0)\n    1.6094379124341003\n\n\nSee the notebooks in ``test\\`` for other use examples.\n\nThe method is described in: Valk\u00c3\u00b3, P.P., and Abate J. 2002. Comparison of\nSequence Accelerators for the Gaver Method of Numerical Laplace Transform\nInversion. *Computers and Mathematics with Application* **48** (3): 629\u00e2\u20ac\u201c636.\nhttps://doi.org/10.1016/j.camwa.2002.10.017.\n\nMore information on multi-precision inversion can be found in: Valk\u00c3\u00b3, P.P.and\nVajda, S. 2002. Inversion of Noise-Free Laplace Transforms: Towards a\nStandardized Set of Test Problems. *Inverse Problems in Engineering* **10** (5):\n467-483. https://doi.org/10.1080/10682760290004294.\n\n\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "GWR Algorithm Numerical Laplace Inversion",
    "version": "1.0.1",
    "project_urls": {
        "Homepage": "https://github.com/petbox-dev/gwr"
    },
    "split_keywords": [
        "laplace",
        "inversion",
        "transform",
        "gwr"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "92de9fc165ceedd5ef520940aae741fd25ae5f6bcd222896f49fbc094153ba5b",
                "md5": "ed7e94d3332b79c45058227297495fb0",
                "sha256": "41a98eff8577c2592e689c7d86f63e78c77afd94822d1f43cbe666ea8ab5469a"
            },
            "downloads": -1,
            "filename": "gwr_inversion-1.0.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "ed7e94d3332b79c45058227297495fb0",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 5926,
            "upload_time": "2020-07-24T20:07:39",
            "upload_time_iso_8601": "2020-07-24T20:07:39.836395Z",
            "url": "https://files.pythonhosted.org/packages/92/de/9fc165ceedd5ef520940aae741fd25ae5f6bcd222896f49fbc094153ba5b/gwr_inversion-1.0.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "7013553039c7307a1a5b5c1fc0523c4d70e505044ba8df91071c12314226881e",
                "md5": "0c2b4097c93cd5bf3c3f6168e820111e",
                "sha256": "18479fee1985e8ee4ff928efbe96ffc542fe83351400f41e43ab4d9d268c7988"
            },
            "downloads": -1,
            "filename": "gwr-inversion-1.0.1.tar.gz",
            "has_sig": false,
            "md5_digest": "0c2b4097c93cd5bf3c3f6168e820111e",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 6417,
            "upload_time": "2020-07-24T20:07:41",
            "upload_time_iso_8601": "2020-07-24T20:07:41.202708Z",
            "url": "https://files.pythonhosted.org/packages/70/13/553039c7307a1a5b5c1fc0523c4d70e505044ba8df91071c12314226881e/gwr-inversion-1.0.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2020-07-24 20:07:41",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "petbox-dev",
    "github_project": "gwr",
    "travis_ci": false,
    "coveralls": true,
    "github_actions": false,
    "lcname": "gwr-inversion"
}
        
Elapsed time: 0.11095s