Gaver-Wynn-Rho Algorithm
------------------------
This is a Python reproduction of the Mathematica package that provides the GWR
function, ``NumericalLaplaceInversion.m``.
https://library.wolfram.com/infocenter/MathSource/4738/
This package provides only one function: ``gwr``. The function calculates the
value of the inverse of a Laplace transform at a specified time value,
``Sequence`` of time values, or numpy array of time values.
The Laplace transform should be provided as a function that uses the ``mpmath``
library for a scalar value of the Laplace parameter. The ``math`` library and
``numpy`` functions do not support multiprecision math and will return invalid
results if they are used.
Simple Example
--------------
.. code-block:: python
>>> import math
>>> from gwr_inversion import gwr
>>> from mpmath import mp
>>> def lap_ln_fn(s: float):
... # log function
... return -mp.log(s) / s - 0.577216 / s
>>> gwr(lap_log_fn, time=5.0, M=32)
mpf('1.6094375773356333')
>>> math.log(5.0)
1.6094379124341003
See the notebooks in ``test\`` for other use examples.
The method is described in: Valkó, P.P., and Abate J. 2002. Comparison of
Sequence Accelerators for the Gaver Method of Numerical Laplace Transform
Inversion. *Computers and Mathematics with Application* **48** (3): 629–636.
https://doi.org/10.1016/j.camwa.2002.10.017.
More information on multi-precision inversion can be found in: Valkó, P.P.and
Vajda, S. 2002. Inversion of Noise-Free Laplace Transforms: Towards a
Standardized Set of Test Problems. *Inverse Problems in Engineering* **10** (5):
467-483. https://doi.org/10.1080/10682760290004294.
Raw data
{
"_id": null,
"home_page": "https://github.com/petbox-dev/gwr",
"name": "gwr-inversion",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.7",
"maintainer_email": "",
"keywords": "laplace,inversion,transform,gwr",
"author": "David S. Fulford",
"author_email": "petbox.dev@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/70/13/553039c7307a1a5b5c1fc0523c4d70e505044ba8df91071c12314226881e/gwr-inversion-1.0.1.tar.gz",
"platform": "",
"description": "Gaver-Wynn-Rho Algorithm\n------------------------\n\nThis is a Python reproduction of the Mathematica package that provides the GWR\nfunction, ``NumericalLaplaceInversion.m``.\n\nhttps://library.wolfram.com/infocenter/MathSource/4738/\n\nThis package provides only one function: ``gwr``. The function calculates the\nvalue of the inverse of a Laplace transform at a specified time value,\n``Sequence`` of time values, or numpy array of time values.\n\nThe Laplace transform should be provided as a function that uses the ``mpmath``\nlibrary for a scalar value of the Laplace parameter. The ``math`` library and\n``numpy`` functions do not support multiprecision math and will return invalid\nresults if they are used.\n\nSimple Example\n--------------\n\n.. code-block:: python\n\n >>> import math\n >>> from gwr_inversion import gwr\n >>> from mpmath import mp\n\n >>> def lap_ln_fn(s: float):\n ... # log function\n ... return -mp.log(s) / s - 0.577216 / s\n\n >>> gwr(lap_log_fn, time=5.0, M=32)\n mpf('1.6094375773356333')\n\n >>> math.log(5.0)\n 1.6094379124341003\n\n\nSee the notebooks in ``test\\`` for other use examples.\n\nThe method is described in: Valk\u00c3\u00b3, P.P., and Abate J. 2002. Comparison of\nSequence Accelerators for the Gaver Method of Numerical Laplace Transform\nInversion. *Computers and Mathematics with Application* **48** (3): 629\u00e2\u20ac\u201c636.\nhttps://doi.org/10.1016/j.camwa.2002.10.017.\n\nMore information on multi-precision inversion can be found in: Valk\u00c3\u00b3, P.P.and\nVajda, S. 2002. Inversion of Noise-Free Laplace Transforms: Towards a\nStandardized Set of Test Problems. *Inverse Problems in Engineering* **10** (5):\n467-483. https://doi.org/10.1080/10682760290004294.\n\n\n",
"bugtrack_url": null,
"license": "",
"summary": "GWR Algorithm Numerical Laplace Inversion",
"version": "1.0.1",
"project_urls": {
"Homepage": "https://github.com/petbox-dev/gwr"
},
"split_keywords": [
"laplace",
"inversion",
"transform",
"gwr"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "92de9fc165ceedd5ef520940aae741fd25ae5f6bcd222896f49fbc094153ba5b",
"md5": "ed7e94d3332b79c45058227297495fb0",
"sha256": "41a98eff8577c2592e689c7d86f63e78c77afd94822d1f43cbe666ea8ab5469a"
},
"downloads": -1,
"filename": "gwr_inversion-1.0.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "ed7e94d3332b79c45058227297495fb0",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.7",
"size": 5926,
"upload_time": "2020-07-24T20:07:39",
"upload_time_iso_8601": "2020-07-24T20:07:39.836395Z",
"url": "https://files.pythonhosted.org/packages/92/de/9fc165ceedd5ef520940aae741fd25ae5f6bcd222896f49fbc094153ba5b/gwr_inversion-1.0.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "7013553039c7307a1a5b5c1fc0523c4d70e505044ba8df91071c12314226881e",
"md5": "0c2b4097c93cd5bf3c3f6168e820111e",
"sha256": "18479fee1985e8ee4ff928efbe96ffc542fe83351400f41e43ab4d9d268c7988"
},
"downloads": -1,
"filename": "gwr-inversion-1.0.1.tar.gz",
"has_sig": false,
"md5_digest": "0c2b4097c93cd5bf3c3f6168e820111e",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.7",
"size": 6417,
"upload_time": "2020-07-24T20:07:41",
"upload_time_iso_8601": "2020-07-24T20:07:41.202708Z",
"url": "https://files.pythonhosted.org/packages/70/13/553039c7307a1a5b5c1fc0523c4d70e505044ba8df91071c12314226881e/gwr-inversion-1.0.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2020-07-24 20:07:41",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "petbox-dev",
"github_project": "gwr",
"travis_ci": false,
"coveralls": true,
"github_actions": false,
"lcname": "gwr-inversion"
}