gym-quadruped


Namegym-quadruped JSON
Version 1.1.0 PyPI version JSON
download
home_pageNone
SummaryA gym environment for quadruped robots using MuJoCo physics engine.
upload_time2025-08-16 18:38:08
maintainerNone
docs_urlNone
authorNone
requires_pythonNone
licenseNone
keywords deep environment gym gymnasium learning locomotion mujoco quadruped reinforcement robotics
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Mujoco Gym Environment for quadupedal legged locomotion

[![PyPI version](https://img.shields.io/pypi/v/gym-quadruped.svg)](https://pypi.org/project/gym-quadruped/) [![Python Version](https://img.shields.io/badge/python-3.10%20--%203.12-blue)](https://github.com/Danfoa/MorphoSymm/actions/workflows/tests.yaml)

# Install Instructions

```bash
  pip install gym-quadruped
  # or install locally
  cd <gym-quadruped root dir> 
  pip install -e . 
```

# Usage Instructions

```python
from gym_quadruped.quadruped_env import QuadrupedEnv

robot_name = "mini_cheetah"   # "aliengo", "mini_cheetah", "go2", "hyqreal", ...
scene_name = "flat"  # perlin | random_boxes
state_observables_names = tuple(QuadrupedEnv.ALL_OBS)  # return all available state observables

env = QuadrupedEnv(robot='mini_cheetah',
                   scene=scene_name,
                   base_vel_command_type="human",  # "forward", "random", "forward+rotate", "human"
                   state_obs_names=state_observables_names,  # Desired quantities in the 'state'
                   )
obs = env.reset()

env.render()
for _ in range(10000):
    action = env.action_space.sample() * 50  # Sample random action
    state, reward, is_terminated, is_truncated, info = env.step(action=action)

    if is_terminated:
        pass
        # Do some stuff
    env.render()
env.close()
```

See also `examples` directory.
            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "gym-quadruped",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": "Daniel Felipe Ordo\u00f1ez Apraez <daniels.ordonez@gmail.com>",
    "keywords": "deep, environment, gym, gymnasium, learning, locomotion, mujoco, quadruped, reinforcement, robotics",
    "author": null,
    "author_email": "Daniel Ordo\u00f1ez-Apraez <daniels.ordonez@gmail.com>, Giulio Turrisi <giulio.turrisi@iit.it>",
    "download_url": "https://files.pythonhosted.org/packages/57/f4/ec0e170dc0542f6a8ed577620aa285b385c88732d368d76a5aec0880188c/gym_quadruped-1.1.0.tar.gz",
    "platform": null,
    "description": "# Mujoco Gym Environment for quadupedal legged locomotion\n\n[![PyPI version](https://img.shields.io/pypi/v/gym-quadruped.svg)](https://pypi.org/project/gym-quadruped/) [![Python Version](https://img.shields.io/badge/python-3.10%20--%203.12-blue)](https://github.com/Danfoa/MorphoSymm/actions/workflows/tests.yaml)\n\n# Install Instructions\n\n```bash\n  pip install gym-quadruped\n  # or install locally\n  cd <gym-quadruped root dir> \n  pip install -e . \n```\n\n# Usage Instructions\n\n```python\nfrom gym_quadruped.quadruped_env import QuadrupedEnv\n\nrobot_name = \"mini_cheetah\"   # \"aliengo\", \"mini_cheetah\", \"go2\", \"hyqreal\", ...\nscene_name = \"flat\"  # perlin | random_boxes\nstate_observables_names = tuple(QuadrupedEnv.ALL_OBS)  # return all available state observables\n\nenv = QuadrupedEnv(robot='mini_cheetah',\n                   scene=scene_name,\n                   base_vel_command_type=\"human\",  # \"forward\", \"random\", \"forward+rotate\", \"human\"\n                   state_obs_names=state_observables_names,  # Desired quantities in the 'state'\n                   )\nobs = env.reset()\n\nenv.render()\nfor _ in range(10000):\n    action = env.action_space.sample() * 50  # Sample random action\n    state, reward, is_terminated, is_truncated, info = env.step(action=action)\n\n    if is_terminated:\n        pass\n        # Do some stuff\n    env.render()\nenv.close()\n```\n\nSee also `examples` directory.",
    "bugtrack_url": null,
    "license": null,
    "summary": "A gym environment for quadruped robots using MuJoCo physics engine.",
    "version": "1.1.0",
    "project_urls": null,
    "split_keywords": [
        "deep",
        " environment",
        " gym",
        " gymnasium",
        " learning",
        " locomotion",
        " mujoco",
        " quadruped",
        " reinforcement",
        " robotics"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "4565891586b8ce40dea402d7011e6bf1c6d126e6bb7a5f6336dab3003a1b8b7d",
                "md5": "e149f108a761227849f4e719dd07a7f8",
                "sha256": "f839a70d0c7475fb125eaaefaba5a618b0fd6f257761f3ded9adff7a128653e3"
            },
            "downloads": -1,
            "filename": "gym_quadruped-1.1.0-py2.py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "e149f108a761227849f4e719dd07a7f8",
            "packagetype": "bdist_wheel",
            "python_version": "py2.py3",
            "requires_python": null,
            "size": 28976857,
            "upload_time": "2025-08-16T18:38:05",
            "upload_time_iso_8601": "2025-08-16T18:38:05.316677Z",
            "url": "https://files.pythonhosted.org/packages/45/65/891586b8ce40dea402d7011e6bf1c6d126e6bb7a5f6336dab3003a1b8b7d/gym_quadruped-1.1.0-py2.py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "57f4ec0e170dc0542f6a8ed577620aa285b385c88732d368d76a5aec0880188c",
                "md5": "a134221a24de6d9811e1c76501967340",
                "sha256": "008c335ee92d1e94fede21495cae6f054f1a405349a200a048c0acfe7203aac6"
            },
            "downloads": -1,
            "filename": "gym_quadruped-1.1.0.tar.gz",
            "has_sig": false,
            "md5_digest": "a134221a24de6d9811e1c76501967340",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 28731356,
            "upload_time": "2025-08-16T18:38:08",
            "upload_time_iso_8601": "2025-08-16T18:38:08.454169Z",
            "url": "https://files.pythonhosted.org/packages/57/f4/ec0e170dc0542f6a8ed577620aa285b385c88732d368d76a5aec0880188c/gym_quadruped-1.1.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-08-16 18:38:08",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "gym-quadruped"
}
        
Elapsed time: 0.51833s