# Mujoco Gym Environment for quadupedal legged locomotion
[](https://pypi.org/project/gym-quadruped/) [](https://github.com/Danfoa/MorphoSymm/actions/workflows/tests.yaml)
# Install Instructions
```bash
pip install gym-quadruped
# or install locally
cd <gym-quadruped root dir>
pip install -e .
```
# Usage Instructions
```python
from gym_quadruped.quadruped_env import QuadrupedEnv
robot_name = "mini_cheetah" # "aliengo", "mini_cheetah", "go2", "hyqreal", ...
scene_name = "flat" # perlin | random_boxes
state_observables_names = tuple(QuadrupedEnv.ALL_OBS) # return all available state observables
env = QuadrupedEnv(robot='mini_cheetah',
scene=scene_name,
base_vel_command_type="human", # "forward", "random", "forward+rotate", "human"
state_obs_names=state_observables_names, # Desired quantities in the 'state'
)
obs = env.reset()
env.render()
for _ in range(10000):
action = env.action_space.sample() * 50 # Sample random action
state, reward, is_terminated, is_truncated, info = env.step(action=action)
if is_terminated:
pass
# Do some stuff
env.render()
env.close()
```
See also `examples` directory.
Raw data
{
"_id": null,
"home_page": null,
"name": "gym-quadruped",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": "Daniel Felipe Ordo\u00f1ez Apraez <daniels.ordonez@gmail.com>",
"keywords": "deep, environment, gym, gymnasium, learning, locomotion, mujoco, quadruped, reinforcement, robotics",
"author": null,
"author_email": "Daniel Ordo\u00f1ez-Apraez <daniels.ordonez@gmail.com>, Giulio Turrisi <giulio.turrisi@iit.it>",
"download_url": "https://files.pythonhosted.org/packages/a8/b0/e0c586562bda2399738f0db2110b23fd3359aecfb2aefe9aea9a3ae176c5/gym_quadruped-1.0.9.tar.gz",
"platform": null,
"description": "# Mujoco Gym Environment for quadupedal legged locomotion\n\n[](https://pypi.org/project/gym-quadruped/) [](https://github.com/Danfoa/MorphoSymm/actions/workflows/tests.yaml)\n\n# Install Instructions\n\n```bash\n pip install gym-quadruped\n # or install locally\n cd <gym-quadruped root dir> \n pip install -e . \n```\n\n# Usage Instructions\n\n```python\nfrom gym_quadruped.quadruped_env import QuadrupedEnv\n\nrobot_name = \"mini_cheetah\" # \"aliengo\", \"mini_cheetah\", \"go2\", \"hyqreal\", ...\nscene_name = \"flat\" # perlin | random_boxes\nstate_observables_names = tuple(QuadrupedEnv.ALL_OBS) # return all available state observables\n\nenv = QuadrupedEnv(robot='mini_cheetah',\n scene=scene_name,\n base_vel_command_type=\"human\", # \"forward\", \"random\", \"forward+rotate\", \"human\"\n state_obs_names=state_observables_names, # Desired quantities in the 'state'\n )\nobs = env.reset()\n\nenv.render()\nfor _ in range(10000):\n action = env.action_space.sample() * 50 # Sample random action\n state, reward, is_terminated, is_truncated, info = env.step(action=action)\n\n if is_terminated:\n pass\n # Do some stuff\n env.render()\nenv.close()\n```\n\nSee also `examples` directory.",
"bugtrack_url": null,
"license": null,
"summary": "A gym environment for quadruped robots using MuJoCo physics engine.",
"version": "1.0.9",
"project_urls": null,
"split_keywords": [
"deep",
" environment",
" gym",
" gymnasium",
" learning",
" locomotion",
" mujoco",
" quadruped",
" reinforcement",
" robotics"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "bb140ac210b3cc2a8cd1025445b41f5aba01d3fd8bacccde95e8a2f067202520",
"md5": "98339c40dd1831ad99dfb0d0873c49de",
"sha256": "3ce450e4e8fcc62058ec84fdb3a4dc5459accfb8bc192fb63591ae5e99b11c72"
},
"downloads": -1,
"filename": "gym_quadruped-1.0.9-py2.py3-none-any.whl",
"has_sig": false,
"md5_digest": "98339c40dd1831ad99dfb0d0873c49de",
"packagetype": "bdist_wheel",
"python_version": "py2.py3",
"requires_python": null,
"size": 28976840,
"upload_time": "2025-08-09T19:37:29",
"upload_time_iso_8601": "2025-08-09T19:37:29.291999Z",
"url": "https://files.pythonhosted.org/packages/bb/14/0ac210b3cc2a8cd1025445b41f5aba01d3fd8bacccde95e8a2f067202520/gym_quadruped-1.0.9-py2.py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "a8b0e0c586562bda2399738f0db2110b23fd3359aecfb2aefe9aea9a3ae176c5",
"md5": "0bb3a851300b38bfb9bb02a2083a548f",
"sha256": "731f8fb34382c60cbc1476ec52c26ff4c40a6281a40a05b2171ab98c5f847c58"
},
"downloads": -1,
"filename": "gym_quadruped-1.0.9.tar.gz",
"has_sig": false,
"md5_digest": "0bb3a851300b38bfb9bb02a2083a548f",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 28731307,
"upload_time": "2025-08-09T19:37:32",
"upload_time_iso_8601": "2025-08-09T19:37:32.577771Z",
"url": "https://files.pythonhosted.org/packages/a8/b0/e0c586562bda2399738f0db2110b23fd3359aecfb2aefe9aea9a3ae176c5/gym_quadruped-1.0.9.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-08-09 19:37:32",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "gym-quadruped"
}