Name | h5max JSON |
Version |
0.3.1
JSON |
| download |
home_page | https://github.com/jdcla/h5max |
Summary | scipy.sparse support on h5py |
upload_time | 2022-12-01 09:07:35 |
maintainer | |
docs_url | None |
author | Jim Clauwaert |
requires_python | >=3.9 |
license | |
keywords |
|
VCS |
 |
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
<div align="center">
<h1>h5max</h1>
A utility package built upon `h5py` for easier data saving and loading of sparse data objects.
[](https://pypi.python.org/pypi/h5max/)
[](https://github.com/jdcla/h5max/blob/main/LICENSE.md)
[](https://github.com/jdcla/h5max/issues)
[](https://github.com/jdcla/h5max/stargazers)
</div>
`h5max` handles storing and loading of `scipy.sparse` data structures in `h5py` file objects, which is not natively supported. It assumes a simple data structure where information of individual samples are stored according to the index they occupy within datasets.
<div align="center">
<img src="https://github.com/jdcla/h5max/raw/main/h5max.png" width="600">
</div>
## Installation
```bash
pip install h5max
```
## Usage
```python
import h5py
import h5max
import numpy as np
fh = h5py.File('my_data.h5', 'w')
a = np.zeros((100,100))
b = np.zeros((1000,50))
a[7,1] = 1
b[1,0] = 10
Ms = [a, b]
# store both a, b
h5max.store_sparse(fh, Ms, format='csr')
# load only a (index 0)
a_out = h5max.load_sparse(fh, 0, format='csr')
# load [a,b]
Ms_out = h5max.load_sparse(fh, [0, 1], format='csr')
fh.close()
```
# Package features
- [x] Support for `csr`, `csc`, `coo` sparse types
- [ ] Support for `bsr`, `dia`, `dok`, `lil` sparse types
- [x] Support for overwriting
- [x] Flexible data loading and saving (both as sparse and numpy arrays.)
Raw data
{
"_id": null,
"home_page": "https://github.com/jdcla/h5max",
"name": "h5max",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.9",
"maintainer_email": "",
"keywords": "",
"author": "Jim Clauwaert",
"author_email": "",
"download_url": "https://files.pythonhosted.org/packages/f7/45/da33aa2b5b7ed8126b2dc8391d212ed8dc05275b8723b1d39c4dc524d3d6/h5max-0.3.1.tar.gz",
"platform": null,
"description": "<div align=\"center\">\n<h1>h5max</h1>\n\nA utility package built upon `h5py` for easier data saving and loading of sparse data objects.\n\n[](https://pypi.python.org/pypi/h5max/)\n[](https://github.com/jdcla/h5max/blob/main/LICENSE.md)\n[](https://github.com/jdcla/h5max/issues)\n[](https://github.com/jdcla/h5max/stargazers)\n</div>\n\n`h5max` handles storing and loading of `scipy.sparse` data structures in `h5py` file objects, which is not natively supported. It assumes a simple data structure where information of individual samples are stored according to the index they occupy within datasets. \n\n<div align=\"center\">\n<img src=\"https://github.com/jdcla/h5max/raw/main/h5max.png\" width=\"600\">\n</div>\n\n## Installation\n\n```bash\npip install h5max\n```\n\n## Usage\n\n```python\nimport h5py\nimport h5max\nimport numpy as np\n\nfh = h5py.File('my_data.h5', 'w')\n\na = np.zeros((100,100))\nb = np.zeros((1000,50))\na[7,1] = 1\nb[1,0] = 10\n\nMs = [a, b]\n\n# store both a, b\nh5max.store_sparse(fh, Ms, format='csr')\n\n# load only a (index 0)\na_out = h5max.load_sparse(fh, 0, format='csr')\n\n# load [a,b]\nMs_out = h5max.load_sparse(fh, [0, 1], format='csr')\n\nfh.close()\n```\n\n# Package features\n\n- [x] Support for `csr`, `csc`, `coo` sparse types\n- [ ] Support for `bsr`, `dia`, `dok`, `lil` sparse types\n- [x] Support for overwriting\n- [x] Flexible data loading and saving (both as sparse and numpy arrays.)\n",
"bugtrack_url": null,
"license": "",
"summary": "scipy.sparse support on h5py",
"version": "0.3.1",
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"md5": "3017f82d6034247d396134b3b33ca116",
"sha256": "4ba0b985990b4d1acfb410f883ecb99251fd5b48a09d8ef161c2c7419afbbb24"
},
"downloads": -1,
"filename": "h5max-0.3.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "3017f82d6034247d396134b3b33ca116",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.9",
"size": 3694,
"upload_time": "2022-12-01T09:07:33",
"upload_time_iso_8601": "2022-12-01T09:07:33.427697Z",
"url": "https://files.pythonhosted.org/packages/3d/43/e39cd96fc91bff06143c8be144057e744ba73782fc83efd13d0ce2659eab/h5max-0.3.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"md5": "c506b03864e45cab3b8a74c4611b825a",
"sha256": "23224d81bed356227cd56ba46740b91ffcbbb9e954023b05039bc9b7b4ee1726"
},
"downloads": -1,
"filename": "h5max-0.3.1.tar.gz",
"has_sig": false,
"md5_digest": "c506b03864e45cab3b8a74c4611b825a",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.9",
"size": 47497,
"upload_time": "2022-12-01T09:07:35",
"upload_time_iso_8601": "2022-12-01T09:07:35.126472Z",
"url": "https://files.pythonhosted.org/packages/f7/45/da33aa2b5b7ed8126b2dc8391d212ed8dc05275b8723b1d39c4dc524d3d6/h5max-0.3.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2022-12-01 09:07:35",
"github": true,
"gitlab": false,
"bitbucket": false,
"github_user": "jdcla",
"github_project": "h5max",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "h5max"
}