Name | hacca JSON |
Version |
0.0.5
JSON |
| download |
home_page | None |
Summary | A short description of your package |
upload_time | 2024-10-21 21:56:01 |
maintainer | None |
docs_url | None |
author | None |
requires_python | None |
license | None |
keywords |
hacca
|
VCS |
 |
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# **haCCA: Multi-module Integrating of spatial transcriptomes and metabolomes.**
haCCA, a workflow utilizing high Correlated feature pairs combined with a modified spatial morphological alignment to ensure high resolution and accuracy of spot-to-spot data integration of spatial transcriptomes and metabolomes.
[](https://badge.fury.io/py/haCCA)

## Installation
```python
pip install hacca
```
## Usage
```python
from hacca import *
a_h5ad = sc.read_h5ad(os.path.join('/path/to/a.h5ad'))
b_prime_h5ad = sc.read_h5ad(os.path.join('/path/to/b_prime.h5ad'))
# construct Data object from a and b_prime
# Data is a triplet of (X: np.ndarray, D: np.ndarray, Label: Optional[np.ndarray]), where X is the feature matrix, D is the spatial matrix that contains the location information, and Label is an optional array that contains the cluster information.
a = Data(X=a_h5ad.X.toarray(), D=a_h5ad.obsm['spatial'])
b_prime = Data(X=b_prime_h5ad.X.toarray(), D=b_prime_h5ad.obsm['spatial'])
# Infer b_predict from (a, b_prime) using the following alignment methods
# manual_gross_alignment | icp_3d_alignment | direct_alignment
# b_predict contains aligned feature from a and samples from b_prime
_b_prime = hacca.manual_gross_alignment(a, b_prime)
_a, _b_prime = hacca.icp_3d_alignment(a, _b_prime)
b_predict = hacca.direct_alignment(_a, _b_prime)
```
## Examples
You can refer to the [examples](./example) folder for more detailed usage.
Raw data
{
"_id": null,
"home_page": null,
"name": "hacca",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": "hacca",
"author": null,
"author_email": "XiaoTian Shen <14301050178@fudan.edu.cn>",
"download_url": "https://files.pythonhosted.org/packages/16/df/ea62c687cb4f6d572646e2758a4920bebd0e8badf97edd78ef536a091769/hacca-0.0.5.tar.gz",
"platform": null,
"description": "# **haCCA: Multi-module Integrating of spatial transcriptomes and metabolomes.**\n\nhaCCA, a workflow utilizing high Correlated feature pairs combined with a modified spatial morphological alignment to ensure high resolution and accuracy of spot-to-spot data integration of spatial transcriptomes and metabolomes.\n\n[](https://badge.fury.io/py/haCCA)\n\n\n\n## Installation\n\n```python\npip install hacca\n```\n\n## Usage\n\n```python\nfrom hacca import *\n\na_h5ad = sc.read_h5ad(os.path.join('/path/to/a.h5ad'))\nb_prime_h5ad = sc.read_h5ad(os.path.join('/path/to/b_prime.h5ad'))\n\n# construct Data object from a and b_prime\n# Data is a triplet of (X: np.ndarray, D: np.ndarray, Label: Optional[np.ndarray]), where X is the feature matrix, D is the spatial matrix that contains the location information, and Label is an optional array that contains the cluster information.\n\na = Data(X=a_h5ad.X.toarray(), D=a_h5ad.obsm['spatial'])\nb_prime = Data(X=b_prime_h5ad.X.toarray(), D=b_prime_h5ad.obsm['spatial'])\n\n# Infer b_predict from (a, b_prime) using the following alignment methods\n# manual_gross_alignment | icp_3d_alignment | direct_alignment\n# b_predict contains aligned feature from a and samples from b_prime\n\n_b_prime = hacca.manual_gross_alignment(a, b_prime)\n_a, _b_prime = hacca.icp_3d_alignment(a, _b_prime)\nb_predict = hacca.direct_alignment(_a, _b_prime)\n```\n\n## Examples\nYou can refer to the [examples](./example) folder for more detailed usage.\n",
"bugtrack_url": null,
"license": null,
"summary": "A short description of your package",
"version": "0.0.5",
"project_urls": {
"Homepage": "https://github.com/shenxiaotianCNS/APC-MSI",
"Issues": "https://github.com/shenxiaotianCNS/APC-MSI/issues",
"Repository": "https://github.com/shenxiaotianCNS/APC-MSI.git"
},
"split_keywords": [
"hacca"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "16dfea62c687cb4f6d572646e2758a4920bebd0e8badf97edd78ef536a091769",
"md5": "4197cd42e826da1b4e42185c84eb69b0",
"sha256": "d9845df0ae9344af0687e3b0f6c16a84cd857296e441ecbb569af42eeb396120"
},
"downloads": -1,
"filename": "hacca-0.0.5.tar.gz",
"has_sig": false,
"md5_digest": "4197cd42e826da1b4e42185c84eb69b0",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 14522,
"upload_time": "2024-10-21T21:56:01",
"upload_time_iso_8601": "2024-10-21T21:56:01.113358Z",
"url": "https://files.pythonhosted.org/packages/16/df/ea62c687cb4f6d572646e2758a4920bebd0e8badf97edd78ef536a091769/hacca-0.0.5.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-10-21 21:56:01",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "shenxiaotianCNS",
"github_project": "APC-MSI",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [],
"lcname": "hacca"
}