# HACS Core
**Foundation models for Healthcare Agent Communication Standard**
Core Pydantic models and base classes that define the healthcare AI communication protocol.
## 🏥 **Healthcare Models**
Essential healthcare data structures optimized for AI agent communication:
- **Patient** - Demographics, contact info, clinical context
- **Observation** - Clinical measurements, lab results, vital signs
- **Encounter** - Healthcare visits, episodes of care
- **Actor** - Healthcare providers with role-based permissions
- **MemoryBlock** - Structured memory for AI clinical reasoning
- **Evidence** - Clinical guidelines, research, decision support
## 🎯 **Key Features**
- **FHIR Compatible** - Full alignment with healthcare standards
- **AI Optimized** - Structured for LLM processing and tool calling
- **Validation Built-in** - Healthcare-specific validation rules
- **Actor Security** - Role-based access control for clinical data
- **Memory System** - Episodic, procedural, and executive memory types
## 📦 **Installation**
```bash
pip install hacs-core
```
## 🚀 **Quick Start**
```python
from hacs_core import Patient, Observation, Actor, MemoryBlock
# Healthcare provider
physician = Actor(
name="Dr. Sarah Chen",
role="PHYSICIAN",
organization="Mount Sinai Health System"
)
# Patient record
patient = Patient(
full_name="Maria Rodriguez",
birth_date="1985-03-15",
gender="female",
active=True
)
# Clinical observation
bp_reading = Observation(
code_text="Blood Pressure",
value="145/90",
unit="mmHg",
status="final",
patient_id=patient.id
)
# Clinical memory
memory = MemoryBlock(
content="Patient presents with elevated BP, discussed lifestyle modifications",
memory_type="episodic",
importance_score=0.8
)
```
## 🔗 **Integration**
HACS Core models work seamlessly with:
- **MCP Tools** - 42+ Hacs Tools via Model Context Protocol
- **LangGraph** - AI agent workflows with clinical memory
- **PostgreSQL** - Persistent storage with pgvector
- **FHIR Systems** - Healthcare standards compliance
## 📄 **License**
Apache-2.0 License - see [LICENSE](../../LICENSE) for details.
Raw data
{
"_id": null,
"home_page": null,
"name": "hacs-core",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.11",
"maintainer_email": "Solano Todeschini <solanovisitor@gmail.com>",
"keywords": "actor, agents, ai, base-classes, core, evidence, healthcare, memory, models",
"author": null,
"author_email": "Solano Todeschini <solanovisitor@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/04/86/49ab014c66003379ef0b4ff234f4d4877bef6f15692ffda93eca3efad50e/hacs_core-0.4.3.tar.gz",
"platform": null,
"description": "# HACS Core\n\n**Foundation models for Healthcare Agent Communication Standard**\n\nCore Pydantic models and base classes that define the healthcare AI communication protocol.\n\n## \ud83c\udfe5 **Healthcare Models**\n\nEssential healthcare data structures optimized for AI agent communication:\n\n- **Patient** - Demographics, contact info, clinical context\n- **Observation** - Clinical measurements, lab results, vital signs\n- **Encounter** - Healthcare visits, episodes of care\n- **Actor** - Healthcare providers with role-based permissions\n- **MemoryBlock** - Structured memory for AI clinical reasoning\n- **Evidence** - Clinical guidelines, research, decision support\n\n## \ud83c\udfaf **Key Features**\n\n- **FHIR Compatible** - Full alignment with healthcare standards\n- **AI Optimized** - Structured for LLM processing and tool calling\n- **Validation Built-in** - Healthcare-specific validation rules\n- **Actor Security** - Role-based access control for clinical data\n- **Memory System** - Episodic, procedural, and executive memory types\n\n## \ud83d\udce6 **Installation**\n\n```bash\npip install hacs-core\n```\n\n## \ud83d\ude80 **Quick Start**\n\n```python\nfrom hacs_core import Patient, Observation, Actor, MemoryBlock\n\n# Healthcare provider\nphysician = Actor(\n name=\"Dr. Sarah Chen\",\n role=\"PHYSICIAN\",\n organization=\"Mount Sinai Health System\"\n)\n\n# Patient record\npatient = Patient(\n full_name=\"Maria Rodriguez\",\n birth_date=\"1985-03-15\",\n gender=\"female\",\n active=True\n)\n\n# Clinical observation\nbp_reading = Observation(\n code_text=\"Blood Pressure\",\n value=\"145/90\",\n unit=\"mmHg\",\n status=\"final\",\n patient_id=patient.id\n)\n\n# Clinical memory\nmemory = MemoryBlock(\n content=\"Patient presents with elevated BP, discussed lifestyle modifications\",\n memory_type=\"episodic\",\n importance_score=0.8\n)\n```\n\n## \ud83d\udd17 **Integration**\n\nHACS Core models work seamlessly with:\n- **MCP Tools** - 42+ Hacs Tools via Model Context Protocol\n- **LangGraph** - AI agent workflows with clinical memory\n- **PostgreSQL** - Persistent storage with pgvector\n- **FHIR Systems** - Healthcare standards compliance\n\n## \ud83d\udcc4 **License**\n\nApache-2.0 License - see [LICENSE](../../LICENSE) for details.\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Core models and base classes for Healthcare Agent Communication Standard",
"version": "0.4.3",
"project_urls": {
"Changelog": "https://github.com/solanovisitor/hacs-ai/blob/main/CHANGELOG.md",
"Documentation": "https://github.com/solanovisitor/hacs-ai/blob/main/docs/",
"Homepage": "https://github.com/solanovisitor/hacs-ai",
"Issues": "https://github.com/solanovisitor/hacs-ai/issues",
"Repository": "https://github.com/solanovisitor/hacs-ai"
},
"split_keywords": [
"actor",
" agents",
" ai",
" base-classes",
" core",
" evidence",
" healthcare",
" memory",
" models"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "d71517c5e3eca4d43836b3ac3de32758a1704f48de970a1cf7e04d219eaf1294",
"md5": "87ec980d896522e136df476b13c5450b",
"sha256": "225e1724e4b10108698f3c73830d05dd926d782db6c11a287d5d6befd636392b"
},
"downloads": -1,
"filename": "hacs_core-0.4.3-py3-none-any.whl",
"has_sig": false,
"md5_digest": "87ec980d896522e136df476b13c5450b",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.11",
"size": 28621,
"upload_time": "2025-08-12T14:27:47",
"upload_time_iso_8601": "2025-08-12T14:27:47.029478Z",
"url": "https://files.pythonhosted.org/packages/d7/15/17c5e3eca4d43836b3ac3de32758a1704f48de970a1cf7e04d219eaf1294/hacs_core-0.4.3-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "048649ab014c66003379ef0b4ff234f4d4877bef6f15692ffda93eca3efad50e",
"md5": "345ab33ef94dfc24dce0278b1f526649",
"sha256": "1b4367b62ce0a29372a0974cf8d725ae3a13064641cfeb18977e749dc776d607"
},
"downloads": -1,
"filename": "hacs_core-0.4.3.tar.gz",
"has_sig": false,
"md5_digest": "345ab33ef94dfc24dce0278b1f526649",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.11",
"size": 33716,
"upload_time": "2025-08-12T14:27:56",
"upload_time_iso_8601": "2025-08-12T14:27:56.817581Z",
"url": "https://files.pythonhosted.org/packages/04/86/49ab014c66003379ef0b4ff234f4d4877bef6f15692ffda93eca3efad50e/hacs_core-0.4.3.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-08-12 14:27:56",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "solanovisitor",
"github_project": "hacs-ai",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "hacs-core"
}