hacs-core


Namehacs-core JSON
Version 0.3.0 PyPI version JSON
download
home_pageNone
SummaryCore models and base classes for Healthcare Agent Communication Standard
upload_time2025-07-30 18:07:36
maintainerNone
docs_urlNone
authorNone
requires_python>=3.11
licenseMIT
keywords actor agents ai base-classes core evidence healthcare memory models
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # HACS Core

**Foundation models for Healthcare Agent Communication Standard**

Core Pydantic models and base classes that define the healthcare AI communication protocol.

## 🏥 **Healthcare Models**

Essential healthcare data structures optimized for AI agent communication:

- **Patient** - Demographics, contact info, clinical context
- **Observation** - Clinical measurements, lab results, vital signs
- **Encounter** - Healthcare visits, episodes of care
- **Actor** - Healthcare providers with role-based permissions
- **MemoryBlock** - Structured memory for AI clinical reasoning
- **Evidence** - Clinical guidelines, research, decision support

## 🎯 **Key Features**

- **FHIR Compatible** - Full alignment with healthcare standards
- **AI Optimized** - Structured for LLM processing and tool calling
- **Validation Built-in** - Healthcare-specific validation rules
- **Actor Security** - Role-based access control for clinical data
- **Memory System** - Episodic, procedural, and executive memory types

## 📦 **Installation**

```bash
pip install hacs-core
```

## 🚀 **Quick Start**

```python
from hacs_core import Patient, Observation, Actor, MemoryBlock

# Healthcare provider
physician = Actor(
    name="Dr. Sarah Chen",
    role="PHYSICIAN",
    organization="Mount Sinai Health System"
)

# Patient record
patient = Patient(
    full_name="Maria Rodriguez",
    birth_date="1985-03-15",
    gender="female",
    active=True
)

# Clinical observation
bp_reading = Observation(
    code_text="Blood Pressure",
    value="145/90",
    unit="mmHg",
    status="final",
    patient_id=patient.id
)

# Clinical memory
memory = MemoryBlock(
    content="Patient presents with elevated BP, discussed lifestyle modifications",
    memory_type="episodic",
    importance_score=0.8
)
```

## 🔗 **Integration**

HACS Core models work seamlessly with:
- **MCP Tools** - 25+ healthcare tools via Model Context Protocol
- **LangGraph** - AI agent workflows with clinical memory
- **PostgreSQL** - Persistent storage with pgvector
- **FHIR Systems** - Healthcare standards compliance

## 📄 **License**

Apache-2.0 License - see [LICENSE](../../LICENSE) for details.

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "hacs-core",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.11",
    "maintainer_email": "HACS Team <support@hacs.dev>",
    "keywords": "actor, agents, ai, base-classes, core, evidence, healthcare, memory, models",
    "author": null,
    "author_email": "HACS Contributors <contributors@hacs.dev>",
    "download_url": "https://files.pythonhosted.org/packages/4b/96/52f524cefc86bcdd931cabfa438f3cef0f63a9ea796f570829793c169560/hacs_core-0.3.0.tar.gz",
    "platform": null,
    "description": "# HACS Core\n\n**Foundation models for Healthcare Agent Communication Standard**\n\nCore Pydantic models and base classes that define the healthcare AI communication protocol.\n\n## \ud83c\udfe5 **Healthcare Models**\n\nEssential healthcare data structures optimized for AI agent communication:\n\n- **Patient** - Demographics, contact info, clinical context\n- **Observation** - Clinical measurements, lab results, vital signs\n- **Encounter** - Healthcare visits, episodes of care\n- **Actor** - Healthcare providers with role-based permissions\n- **MemoryBlock** - Structured memory for AI clinical reasoning\n- **Evidence** - Clinical guidelines, research, decision support\n\n## \ud83c\udfaf **Key Features**\n\n- **FHIR Compatible** - Full alignment with healthcare standards\n- **AI Optimized** - Structured for LLM processing and tool calling\n- **Validation Built-in** - Healthcare-specific validation rules\n- **Actor Security** - Role-based access control for clinical data\n- **Memory System** - Episodic, procedural, and executive memory types\n\n## \ud83d\udce6 **Installation**\n\n```bash\npip install hacs-core\n```\n\n## \ud83d\ude80 **Quick Start**\n\n```python\nfrom hacs_core import Patient, Observation, Actor, MemoryBlock\n\n# Healthcare provider\nphysician = Actor(\n    name=\"Dr. Sarah Chen\",\n    role=\"PHYSICIAN\",\n    organization=\"Mount Sinai Health System\"\n)\n\n# Patient record\npatient = Patient(\n    full_name=\"Maria Rodriguez\",\n    birth_date=\"1985-03-15\",\n    gender=\"female\",\n    active=True\n)\n\n# Clinical observation\nbp_reading = Observation(\n    code_text=\"Blood Pressure\",\n    value=\"145/90\",\n    unit=\"mmHg\",\n    status=\"final\",\n    patient_id=patient.id\n)\n\n# Clinical memory\nmemory = MemoryBlock(\n    content=\"Patient presents with elevated BP, discussed lifestyle modifications\",\n    memory_type=\"episodic\",\n    importance_score=0.8\n)\n```\n\n## \ud83d\udd17 **Integration**\n\nHACS Core models work seamlessly with:\n- **MCP Tools** - 25+ healthcare tools via Model Context Protocol\n- **LangGraph** - AI agent workflows with clinical memory\n- **PostgreSQL** - Persistent storage with pgvector\n- **FHIR Systems** - Healthcare standards compliance\n\n## \ud83d\udcc4 **License**\n\nApache-2.0 License - see [LICENSE](../../LICENSE) for details.\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Core models and base classes for Healthcare Agent Communication Standard",
    "version": "0.3.0",
    "project_urls": {
        "Changelog": "https://github.com/solana-hacs/hacs/blob/main/CHANGELOG.md",
        "Documentation": "https://docs.hacs.dev",
        "Homepage": "https://github.com/solana-hacs/hacs",
        "Issues": "https://github.com/solanovisitor/hacs-ai/issues",
        "Repository": "https://github.com/solanovisitor/hacs-ai"
    },
    "split_keywords": [
        "actor",
        " agents",
        " ai",
        " base-classes",
        " core",
        " evidence",
        " healthcare",
        " memory",
        " models"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "4d5bd55b132d69fe1d3a1a9ba8ccab3c0a551a670d4408710c02c125b2eea830",
                "md5": "ed20647dc9f3eae8e9c2c2ff0bda0e15",
                "sha256": "caf0885fb6a36d2bfe67172a4c7244ec0675b2c679dab451ddc2ca91cf931a96"
            },
            "downloads": -1,
            "filename": "hacs_core-0.3.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "ed20647dc9f3eae8e9c2c2ff0bda0e15",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.11",
            "size": 134037,
            "upload_time": "2025-07-30T18:07:35",
            "upload_time_iso_8601": "2025-07-30T18:07:35.185335Z",
            "url": "https://files.pythonhosted.org/packages/4d/5b/d55b132d69fe1d3a1a9ba8ccab3c0a551a670d4408710c02c125b2eea830/hacs_core-0.3.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "4b9652f524cefc86bcdd931cabfa438f3cef0f63a9ea796f570829793c169560",
                "md5": "2ea48813b195d48c52702d138d95a434",
                "sha256": "49f98ae072ef34587bb1170a80e35ce3a7221c66f149bfe1ef4e3168657aa7dd"
            },
            "downloads": -1,
            "filename": "hacs_core-0.3.0.tar.gz",
            "has_sig": false,
            "md5_digest": "2ea48813b195d48c52702d138d95a434",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.11",
            "size": 110122,
            "upload_time": "2025-07-30T18:07:36",
            "upload_time_iso_8601": "2025-07-30T18:07:36.464788Z",
            "url": "https://files.pythonhosted.org/packages/4b/96/52f524cefc86bcdd931cabfa438f3cef0f63a9ea796f570829793c169560/hacs_core-0.3.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-30 18:07:36",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "solana-hacs",
    "github_project": "hacs",
    "github_not_found": true,
    "lcname": "hacs-core"
}
        
Elapsed time: 1.51886s