# HACS Models
Clinical models for Healthcare Agent Communication Standard (HACS).
## Overview
`hacs-models` provides comprehensive clinical data models that are FHIR-compliant and designed for healthcare agent communication. These models represent core healthcare entities like patients, observations, encounters, and agent messages.
## Key Models
### Patient
Represents a healthcare patient with:
- Demographics and identification
- Contact information
- Medical record integration
- FHIR R5 compliance
### Observation
Clinical observations and measurements:
- Vital signs and lab results
- Coded values with standard terminologies
- Temporal data with timestamps
- Quality indicators and reliability
### Encounter
Healthcare encounters and visits:
- Encounter classification and status
- Participant information
- Location and timing
- Care team assignments
### AgentMessage
Messages exchanged between healthcare agents:
- Structured message content
- Agent identification and routing
- Message threading and correlation
- Priority and urgency indicators
## Installation
```bash
pip install hacs-models
```
## Quick Start
```python
from hacs_models import Patient, Observation, Encounter, AgentMessage
from hacs_core import Actor
# Create a patient
patient = Patient(
display_name="John Doe",
birth_date="1980-01-01",
gender="male"
)
# Create an observation
observation = Observation(
patient_id=patient.id,
observation_type="vital_signs",
value={"systolic": 120, "diastolic": 80},
unit="mmHg",
timestamp="2024-01-15T10:30:00Z"
)
# Create an encounter
encounter = Encounter(
patient_id=patient.id,
encounter_type="outpatient",
status="in_progress",
start_time="2024-01-15T10:00:00Z"
)
# Create an agent message
actor = Actor(actor_id="dr_smith", actor_type="clinician")
message = AgentMessage(
sender_id="dr_smith",
content="Patient shows elevated blood pressure",
message_type="clinical_note",
actor_context=actor
)
```
## FHIR Compliance
All models are designed to be FHIR R5 compliant:
- Standard resource structures
- Coded values using standard terminologies
- Proper resource relationships
- Validation against FHIR specifications
## Documentation
For complete documentation, see the [HACS Models Documentation](https://github.com/solanovisitor/hacs/blob/main/docs/modules/hacs-models.md).
## License
Licensed under the Apache License, Version 2.0. See [LICENSE](https://github.com/solanovisitor/hacs/blob/main/LICENSE) for details.
## Contributing
See [Contributing Guidelines](https://github.com/solanovisitor/hacs/blob/main/docs/contributing/guidelines.md) for information on how to contribute to HACS Models.
Raw data
{
"_id": null,
"home_page": null,
"name": "hacs-models",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.10",
"maintainer_email": "Solano Todeschini <solano.todeschini@gmail.com>",
"keywords": "agents, ai, clinical, encounter, fhir, healthcare, models, observation, patient",
"author": null,
"author_email": "Solano Todeschini <solano.todeschini@gmail.com>",
"download_url": null,
"platform": null,
"description": "# HACS Models\n\nClinical models for Healthcare Agent Communication Standard (HACS).\n\n## Overview\n\n`hacs-models` provides comprehensive clinical data models that are FHIR-compliant and designed for healthcare agent communication. These models represent core healthcare entities like patients, observations, encounters, and agent messages.\n\n## Key Models\n\n### Patient\nRepresents a healthcare patient with:\n- Demographics and identification\n- Contact information\n- Medical record integration\n- FHIR R5 compliance\n\n### Observation\nClinical observations and measurements:\n- Vital signs and lab results\n- Coded values with standard terminologies\n- Temporal data with timestamps\n- Quality indicators and reliability\n\n### Encounter\nHealthcare encounters and visits:\n- Encounter classification and status\n- Participant information\n- Location and timing\n- Care team assignments\n\n### AgentMessage\nMessages exchanged between healthcare agents:\n- Structured message content\n- Agent identification and routing\n- Message threading and correlation\n- Priority and urgency indicators\n\n## Installation\n\n```bash\npip install hacs-models\n```\n\n## Quick Start\n\n```python\nfrom hacs_models import Patient, Observation, Encounter, AgentMessage\nfrom hacs_core import Actor\n\n# Create a patient\npatient = Patient(\n display_name=\"John Doe\",\n birth_date=\"1980-01-01\",\n gender=\"male\"\n)\n\n# Create an observation\nobservation = Observation(\n patient_id=patient.id,\n observation_type=\"vital_signs\",\n value={\"systolic\": 120, \"diastolic\": 80},\n unit=\"mmHg\",\n timestamp=\"2024-01-15T10:30:00Z\"\n)\n\n# Create an encounter\nencounter = Encounter(\n patient_id=patient.id,\n encounter_type=\"outpatient\",\n status=\"in_progress\",\n start_time=\"2024-01-15T10:00:00Z\"\n)\n\n# Create an agent message\nactor = Actor(actor_id=\"dr_smith\", actor_type=\"clinician\")\nmessage = AgentMessage(\n sender_id=\"dr_smith\",\n content=\"Patient shows elevated blood pressure\",\n message_type=\"clinical_note\",\n actor_context=actor\n)\n```\n\n## FHIR Compliance\n\nAll models are designed to be FHIR R5 compliant:\n- Standard resource structures\n- Coded values using standard terminologies\n- Proper resource relationships\n- Validation against FHIR specifications\n\n## Documentation\n\nFor complete documentation, see the [HACS Models Documentation](https://github.com/solanovisitor/hacs/blob/main/docs/modules/hacs-models.md).\n\n## License\n\nLicensed under the Apache License, Version 2.0. See [LICENSE](https://github.com/solanovisitor/hacs/blob/main/LICENSE) for details.\n\n## Contributing\n\nSee [Contributing Guidelines](https://github.com/solanovisitor/hacs/blob/main/docs/contributing/guidelines.md) for information on how to contribute to HACS Models.\n",
"bugtrack_url": null,
"license": "Apache-2.0",
"summary": "Healthcare Agent Communication Standard - Clinical Models",
"version": "0.2.2",
"project_urls": {
"Bug Tracker": "https://github.com/solanovisitor/hacs/issues",
"Changelog": "https://github.com/solanovisitor/hacs/blob/main/docs/reference/changelog.md",
"Documentation": "https://github.com/solanovisitor/hacs/blob/main/docs/modules/hacs-models.md",
"Homepage": "https://github.com/solanovisitor/hacs",
"Repository": "https://github.com/solanovisitor/hacs"
},
"split_keywords": [
"agents",
" ai",
" clinical",
" encounter",
" fhir",
" healthcare",
" models",
" observation",
" patient"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "767d199217e444f96dfa612845ae1e771ae308a87fe5b57b0e0541af88a03246",
"md5": "0198cd50716ab4e2c1564387eb5087a1",
"sha256": "de609abcff491fe2638198ff0fc4814b18062c423f21797d10fdcab7a39954ce"
},
"downloads": -1,
"filename": "hacs_models-0.2.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "0198cd50716ab4e2c1564387eb5087a1",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.10",
"size": 23881,
"upload_time": "2025-07-09T14:52:30",
"upload_time_iso_8601": "2025-07-09T14:52:30.128182Z",
"url": "https://files.pythonhosted.org/packages/76/7d/199217e444f96dfa612845ae1e771ae308a87fe5b57b0e0541af88a03246/hacs_models-0.2.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-07-09 14:52:30",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "solanovisitor",
"github_project": "hacs",
"github_not_found": true,
"lcname": "hacs-models"
}