Name | harlequin_bigquery JSON |
Version |
1.0.2
JSON |
| download |
home_page | |
Summary | A Harlequin adapter for Google BigQuery. |
upload_time | 2024-01-16 03:56:57 |
maintainer | |
docs_url | None |
author | Josh Temple |
requires_python | >=3.8.1,<4.0 |
license | MIT |
keywords |
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# harlequin-bigquery
This is a BigQuery adapter for [Harlequin](https://github.com/tconbeer/harlequin), a SQL IDE for the terminal.
This adapter will use Application Default Credentials to authenticate with BigQuery and run queries.
## Configuration
This adapter supports the following options:
- `project`: The ID of the Google Cloud project to run Harlequin in. Defaults to whatever it can infer from the user's environment, i.e. `gcloud config list project`.
- `location`: The [location](https://cloud.google.com/compute/docs/regions-zones#available) used to run the catalog queries, which [must be region-qualified](https://cloud.google.com/bigquery/docs/information-schema-intro#syntax). Defaults to `US`.
## Required permissions
The user will need the permission to query both [`INFORMATION_SCHEMA.TABLES`](https://cloud.google.com/bigquery/docs/information-schema-tables) and [`INFORMATION_SCHEMA.COLUMNS`](https://cloud.google.com/bigquery/docs/information-schema-columns) to load the data catalog.
To query these views, you need the following Identity and Access Management (IAM) permissions:
- `bigquery.tables.get`
- `bigquery.tables.list`
- `bigquery.routines.get`
- `bigquery.routines.list`
Each of the following predefined IAM roles includes the necessary permissions:
- `roles/bigquery.admin`
- `roles/bigquery.dataViewer`
- `roles/bigquery.metadataViewer`
For more information about BigQuery permissions, see [Access control with IAM](https://cloud.google.com/bigquery/docs/access-control).
Raw data
{
"_id": null,
"home_page": "",
"name": "harlequin_bigquery",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.8.1,<4.0",
"maintainer_email": "",
"keywords": "",
"author": "Josh Temple",
"author_email": "tconbeer@users.noreply.github.com",
"download_url": "https://files.pythonhosted.org/packages/0a/ff/fc76f5b8618753706aebfe4833b6825b6972326cb20a3f8f983af60e7e01/harlequin_bigquery-1.0.2.tar.gz",
"platform": null,
"description": "# harlequin-bigquery\n\nThis is a BigQuery adapter for [Harlequin](https://github.com/tconbeer/harlequin), a SQL IDE for the terminal.\n\nThis adapter will use Application Default Credentials to authenticate with BigQuery and run queries.\n\n## Configuration\n\nThis adapter supports the following options:\n\n- `project`: The ID of the Google Cloud project to run Harlequin in. Defaults to whatever it can infer from the user's environment, i.e. `gcloud config list project`.\n- `location`: The [location](https://cloud.google.com/compute/docs/regions-zones#available) used to run the catalog queries, which [must be region-qualified](https://cloud.google.com/bigquery/docs/information-schema-intro#syntax). Defaults to `US`.\n\n## Required permissions\n\nThe user will need the permission to query both [`INFORMATION_SCHEMA.TABLES`](https://cloud.google.com/bigquery/docs/information-schema-tables) and [`INFORMATION_SCHEMA.COLUMNS`](https://cloud.google.com/bigquery/docs/information-schema-columns) to load the data catalog.\n\nTo query these views, you need the following Identity and Access Management (IAM) permissions:\n\n- `bigquery.tables.get`\n- `bigquery.tables.list`\n- `bigquery.routines.get`\n- `bigquery.routines.list`\n\nEach of the following predefined IAM roles includes the necessary permissions:\n\n- `roles/bigquery.admin`\n- `roles/bigquery.dataViewer`\n- `roles/bigquery.metadataViewer`\n\nFor more information about BigQuery permissions, see [Access control with IAM](https://cloud.google.com/bigquery/docs/access-control).\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "A Harlequin adapter for Google BigQuery.",
"version": "1.0.2",
"project_urls": null,
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "36fcfe4ea5d7b25f454731ab0da63bf29b294bb87c417d5237d81572c3fb2cf9",
"md5": "76361cccb61f2b0fbbd3fa6b83c4f358",
"sha256": "d6a1d47ddddbaa97590051fbda35f56731044d0c166c2f42de6f509b79187325"
},
"downloads": -1,
"filename": "harlequin_bigquery-1.0.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "76361cccb61f2b0fbbd3fa6b83c4f358",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8.1,<4.0",
"size": 9068,
"upload_time": "2024-01-16T03:56:56",
"upload_time_iso_8601": "2024-01-16T03:56:56.137663Z",
"url": "https://files.pythonhosted.org/packages/36/fc/fe4ea5d7b25f454731ab0da63bf29b294bb87c417d5237d81572c3fb2cf9/harlequin_bigquery-1.0.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "0afffc76f5b8618753706aebfe4833b6825b6972326cb20a3f8f983af60e7e01",
"md5": "bf78c80de3f4559c3a3a0720c69ea175",
"sha256": "b883d884ae11e8dee9aac298d86a33906efa588fa0aeedae9ec2b90713b8fbf6"
},
"downloads": -1,
"filename": "harlequin_bigquery-1.0.2.tar.gz",
"has_sig": false,
"md5_digest": "bf78c80de3f4559c3a3a0720c69ea175",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8.1,<4.0",
"size": 8241,
"upload_time": "2024-01-16T03:56:57",
"upload_time_iso_8601": "2024-01-16T03:56:57.807227Z",
"url": "https://files.pythonhosted.org/packages/0a/ff/fc76f5b8618753706aebfe4833b6825b6972326cb20a3f8f983af60e7e01/harlequin_bigquery-1.0.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-01-16 03:56:57",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "harlequin_bigquery"
}