Name | harm-analysis JSON |
Version |
1.2.0
JSON |
| download |
home_page | None |
Summary | A Python library to estimate parameters from a signal containing a tone. |
upload_time | 2024-11-11 15:51:40 |
maintainer | None |
docs_url | None |
author | None |
requires_python | None |
license | MIT |
keywords |
dsp
fixed-point
signal-processing
snr
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
Introduction
------------
The harmonic analysis function uses an FFT to estimate the following parameters from a signal containing a tone:
* THD and THD+N
* Fundamental power and frequency location
* Noise power
* SNR, SINAD
* DC level
* Total integrated noise (everything except DC and the fundamental)
The full documentation is hosted on ReadTheDocs:`Harmonic Analysis <https://harm-analysis.readthedocs.io/en/latest/index.html>`_.
Installation
------------
The harm_analysis package is available via PIP install:
.. code-block:: python
python3 -m venv pyenv
source pyenv/bin/activate
pip install harm_analysis
After installing the package, the harm_analysis function should be available via import:
.. code-block:: python
from harm_analysis import harm_analysis
Documentation on how to use the function can be found `here <https://harm-analysis.readthedocs.io/en/latest/harm_analysis.html>`_.
Command line interface
----------------------
Installing the package also installs a command line interface, that allows the user to
run the function for text files with time domain data:
The command is `harm_analysis`:
.. code-block::
harm_analysis --help
Output:
.. code-block::
Usage: harm_analysis [OPTIONS] FILENAME
Runs the harm_analysis function for a file containing time domain data
Options:
--fs FLOAT Sampling frequency.
--plot Plot the power spectrum of the data
--sep TEXT Separator between items.
--sfactor TEXT Scaling factor. The data will be multiplied by this number,
before the function is called. Examples: 1/8, 5, etc
--help Show this message and exit.
Raw data
{
"_id": null,
"home_page": null,
"name": "harm-analysis",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": "DSP, Fixed-point, Signal-Processing, SNR",
"author": null,
"author_email": "Eric Macedo <ericsmacedo@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/23/9d/9cabebe585103cc4d92a949f8be404ece728a4af14016f0b58071607478d/harm_analysis-1.2.0.tar.gz",
"platform": null,
"description": "\nIntroduction\n------------\nThe harmonic analysis function uses an FFT to estimate the following parameters from a signal containing a tone:\n\n* THD and THD+N\n* Fundamental power and frequency location\n* Noise power\n* SNR, SINAD\n* DC level\n* Total integrated noise (everything except DC and the fundamental)\n\nThe full documentation is hosted on ReadTheDocs:`Harmonic Analysis <https://harm-analysis.readthedocs.io/en/latest/index.html>`_.\n\nInstallation\n------------\nThe harm_analysis package is available via PIP install:\n\n.. code-block:: python\n\n python3 -m venv pyenv\n source pyenv/bin/activate\n\n pip install harm_analysis\n\nAfter installing the package, the harm_analysis function should be available via import:\n\n.. code-block:: python\n\n from harm_analysis import harm_analysis\n\nDocumentation on how to use the function can be found `here <https://harm-analysis.readthedocs.io/en/latest/harm_analysis.html>`_.\n\nCommand line interface\n----------------------\n\nInstalling the package also installs a command line interface, that allows the user to\nrun the function for text files with time domain data:\n\nThe command is `harm_analysis`:\n\n.. code-block::\n\n harm_analysis --help\n\nOutput:\n\n.. code-block::\n\n Usage: harm_analysis [OPTIONS] FILENAME\n\n Runs the harm_analysis function for a file containing time domain data\n\n Options:\n --fs FLOAT Sampling frequency.\n --plot Plot the power spectrum of the data\n --sep TEXT Separator between items.\n --sfactor TEXT Scaling factor. The data will be multiplied by this number,\n before the function is called. Examples: 1/8, 5, etc\n --help Show this message and exit.\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "A Python library to estimate parameters from a signal containing a tone.",
"version": "1.2.0",
"project_urls": {
"Documentation": "https://harm-analysis.readthedocs.io/en/latest/",
"Source Code": "https://github.com/ericsmacedo/harm_analysis"
},
"split_keywords": [
"dsp",
" fixed-point",
" signal-processing",
" snr"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "990774875e6046cf9798de9e3ffbbe97de671b5ab9db7e29f4a6741cb694f461",
"md5": "32b5014206e0ccb354d7e7cb0797c6c4",
"sha256": "e2d6427c1e6878e953b3e02756d1a6df03efaf4dbe578738cd8ba8791e0cc031"
},
"downloads": -1,
"filename": "harm_analysis-1.2.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "32b5014206e0ccb354d7e7cb0797c6c4",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 9274,
"upload_time": "2024-11-11T15:51:38",
"upload_time_iso_8601": "2024-11-11T15:51:38.525378Z",
"url": "https://files.pythonhosted.org/packages/99/07/74875e6046cf9798de9e3ffbbe97de671b5ab9db7e29f4a6741cb694f461/harm_analysis-1.2.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "239d9cabebe585103cc4d92a949f8be404ece728a4af14016f0b58071607478d",
"md5": "9f23806c7cf2f1e3cdddd7e915bda99e",
"sha256": "6b473f33b1f806e78de39af5d6a50b71c39ec7a9d32b6751843a275890ded7b3"
},
"downloads": -1,
"filename": "harm_analysis-1.2.0.tar.gz",
"has_sig": false,
"md5_digest": "9f23806c7cf2f1e3cdddd7e915bda99e",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 113070,
"upload_time": "2024-11-11T15:51:40",
"upload_time_iso_8601": "2024-11-11T15:51:40.588414Z",
"url": "https://files.pythonhosted.org/packages/23/9d/9cabebe585103cc4d92a949f8be404ece728a4af14016f0b58071607478d/harm_analysis-1.2.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-11-11 15:51:40",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "ericsmacedo",
"github_project": "harm_analysis",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "harm-analysis"
}