harm-analysis


Nameharm-analysis JSON
Version 1.2.0 PyPI version JSON
download
home_pageNone
SummaryA Python library to estimate parameters from a signal containing a tone.
upload_time2024-11-11 15:51:40
maintainerNone
docs_urlNone
authorNone
requires_pythonNone
licenseMIT
keywords dsp fixed-point signal-processing snr
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            
Introduction
------------
The harmonic analysis function uses an FFT to estimate the following parameters from a signal containing a tone:

* THD and THD+N
* Fundamental power and frequency location
* Noise power
* SNR, SINAD
* DC level
* Total integrated noise (everything except DC and the fundamental)

The full documentation is hosted on ReadTheDocs:`Harmonic Analysis <https://harm-analysis.readthedocs.io/en/latest/index.html>`_.

Installation
------------
The harm_analysis package is available via PIP install:

.. code-block:: python

   python3 -m venv pyenv
   source pyenv/bin/activate

   pip install harm_analysis

After installing the package, the harm_analysis function should be available via import:

.. code-block:: python

    from harm_analysis import harm_analysis

Documentation on how to use the function can be found `here <https://harm-analysis.readthedocs.io/en/latest/harm_analysis.html>`_.

Command line interface
----------------------

Installing the package also installs a command line interface, that allows the user to
run the function for text files with time domain data:

The command is `harm_analysis`:

.. code-block::

    harm_analysis --help

Output:

.. code-block::

    Usage: harm_analysis [OPTIONS] FILENAME

      Runs the harm_analysis function for a file containing time domain data

    Options:
      --fs FLOAT      Sampling frequency.
      --plot          Plot the power spectrum of the data
      --sep TEXT      Separator between items.
      --sfactor TEXT  Scaling factor. The data will be multiplied by this number,
                      before the function is called. Examples: 1/8, 5, etc
      --help          Show this message and exit.

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "harm-analysis",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "DSP, Fixed-point, Signal-Processing, SNR",
    "author": null,
    "author_email": "Eric Macedo <ericsmacedo@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/23/9d/9cabebe585103cc4d92a949f8be404ece728a4af14016f0b58071607478d/harm_analysis-1.2.0.tar.gz",
    "platform": null,
    "description": "\nIntroduction\n------------\nThe harmonic analysis function uses an FFT to estimate the following parameters from a signal containing a tone:\n\n* THD and THD+N\n* Fundamental power and frequency location\n* Noise power\n* SNR, SINAD\n* DC level\n* Total integrated noise (everything except DC and the fundamental)\n\nThe full documentation is hosted on ReadTheDocs:`Harmonic Analysis <https://harm-analysis.readthedocs.io/en/latest/index.html>`_.\n\nInstallation\n------------\nThe harm_analysis package is available via PIP install:\n\n.. code-block:: python\n\n   python3 -m venv pyenv\n   source pyenv/bin/activate\n\n   pip install harm_analysis\n\nAfter installing the package, the harm_analysis function should be available via import:\n\n.. code-block:: python\n\n    from harm_analysis import harm_analysis\n\nDocumentation on how to use the function can be found `here <https://harm-analysis.readthedocs.io/en/latest/harm_analysis.html>`_.\n\nCommand line interface\n----------------------\n\nInstalling the package also installs a command line interface, that allows the user to\nrun the function for text files with time domain data:\n\nThe command is `harm_analysis`:\n\n.. code-block::\n\n    harm_analysis --help\n\nOutput:\n\n.. code-block::\n\n    Usage: harm_analysis [OPTIONS] FILENAME\n\n      Runs the harm_analysis function for a file containing time domain data\n\n    Options:\n      --fs FLOAT      Sampling frequency.\n      --plot          Plot the power spectrum of the data\n      --sep TEXT      Separator between items.\n      --sfactor TEXT  Scaling factor. The data will be multiplied by this number,\n                      before the function is called. Examples: 1/8, 5, etc\n      --help          Show this message and exit.\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "A Python library to estimate parameters from a signal containing a tone.",
    "version": "1.2.0",
    "project_urls": {
        "Documentation": "https://harm-analysis.readthedocs.io/en/latest/",
        "Source Code": "https://github.com/ericsmacedo/harm_analysis"
    },
    "split_keywords": [
        "dsp",
        " fixed-point",
        " signal-processing",
        " snr"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "990774875e6046cf9798de9e3ffbbe97de671b5ab9db7e29f4a6741cb694f461",
                "md5": "32b5014206e0ccb354d7e7cb0797c6c4",
                "sha256": "e2d6427c1e6878e953b3e02756d1a6df03efaf4dbe578738cd8ba8791e0cc031"
            },
            "downloads": -1,
            "filename": "harm_analysis-1.2.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "32b5014206e0ccb354d7e7cb0797c6c4",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 9274,
            "upload_time": "2024-11-11T15:51:38",
            "upload_time_iso_8601": "2024-11-11T15:51:38.525378Z",
            "url": "https://files.pythonhosted.org/packages/99/07/74875e6046cf9798de9e3ffbbe97de671b5ab9db7e29f4a6741cb694f461/harm_analysis-1.2.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "239d9cabebe585103cc4d92a949f8be404ece728a4af14016f0b58071607478d",
                "md5": "9f23806c7cf2f1e3cdddd7e915bda99e",
                "sha256": "6b473f33b1f806e78de39af5d6a50b71c39ec7a9d32b6751843a275890ded7b3"
            },
            "downloads": -1,
            "filename": "harm_analysis-1.2.0.tar.gz",
            "has_sig": false,
            "md5_digest": "9f23806c7cf2f1e3cdddd7e915bda99e",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 113070,
            "upload_time": "2024-11-11T15:51:40",
            "upload_time_iso_8601": "2024-11-11T15:51:40.588414Z",
            "url": "https://files.pythonhosted.org/packages/23/9d/9cabebe585103cc4d92a949f8be404ece728a4af14016f0b58071607478d/harm_analysis-1.2.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-11 15:51:40",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "ericsmacedo",
    "github_project": "harm_analysis",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "harm-analysis"
}
        
Elapsed time: 1.07025s