Name | hawkflowairflow JSON |
Version |
0.0.3
JSON |
| download |
home_page | |
Summary | HawkFlow.ai apache airflow integration |
upload_time | 2023-10-02 09:44:18 |
maintainer | |
docs_url | None |
author | |
requires_python | >=3.7 |
license | LICENSE |
keywords |
hawkflow
airflow
monitoring
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
![HawkFLow.ai](https://hawkflow.ai/static/images/emails/bars.png)
# HawkFlow.ai apache airflow integration
1. First, sign up to hawkflow for free: https://hawkflow.ai/ and get an API key
2. Install the pip package `pip install hawkflowairflow`
3. Add this to the top of your DAG
```python
from hawkflowairflow import hawkflow_callbacks
hawkflow_callbacks.HF_API_KEY = "YOUR_HAWKFLOW_API_KEY_HERE"
```
4. Add these two lines to default_args in your DAG:
```
default_args={
"on_success_callback": hawkflow_callbacks.hawkflow_success_callback,
"on_execute_callback": hawkflow_callbacks.hawkflow_start_callback
}
```
All done. Now when your DAG runs, you will see the output in the HawkFlow UI. https://app.hawkflow.ai/login
### <span style="color:#D10000">Known Issues</span>
If you are on an <span style="color:red">ARM mac</span> and notice that your DAG is just hanging. You may need to put this
at the top of your DAG. Airflow is running as a different user on your mac, and the security is blocking outgoing requests.
```
import os
os.environ['NO_PROXY'] = '*'
```
### More examples
More examples: [HawkFlow.ai Python examples](https://github.com/hawkflow/hawkflow-examples/tree/master/python)
Read the docs: [HawkFlow.ai documentation](https://docs.hawkflow.ai/)
## What is HawkFlow.ai?
HawkFlow.ai is a new monitoring platform that makes it easier than ever to make monitoring part of your development process.
Whether you are an Engineer, a Data Scientist, an Analyst, or anyone else that writes code, HawkFlow.ai helps you and your team take ownership of monitoring.
Raw data
{
"_id": null,
"home_page": "",
"name": "hawkflowairflow",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.7",
"maintainer_email": "",
"keywords": "hawkflow,airflow,monitoring",
"author": "",
"author_email": "",
"download_url": "https://files.pythonhosted.org/packages/d5/c9/7ee9f39938c86f6b409f11b469c9b780b8d39fd1d54784b18807c5630a5e/hawkflowairflow-0.0.3.tar.gz",
"platform": null,
"description": "![HawkFLow.ai](https://hawkflow.ai/static/images/emails/bars.png)\n\n# HawkFlow.ai apache airflow integration\n\n1. First, sign up to hawkflow for free: https://hawkflow.ai/ and get an API key\n2. Install the pip package `pip install hawkflowairflow`\n3. Add this to the top of your DAG\n \n```python\nfrom hawkflowairflow import hawkflow_callbacks\n\nhawkflow_callbacks.HF_API_KEY = \"YOUR_HAWKFLOW_API_KEY_HERE\"\n```\n\n4. Add these two lines to default_args in your DAG:\n\n```\ndefault_args={ \n \"on_success_callback\": hawkflow_callbacks.hawkflow_success_callback,\n \"on_execute_callback\": hawkflow_callbacks.hawkflow_start_callback\n}\n``` \n\nAll done. Now when your DAG runs, you will see the output in the HawkFlow UI. https://app.hawkflow.ai/login\n\n\n### <span style=\"color:#D10000\">Known Issues</span>\n\nIf you are on an <span style=\"color:red\">ARM mac</span> and notice that your DAG is just hanging. You may need to put this\nat the top of your DAG. Airflow is running as a different user on your mac, and the security is blocking outgoing requests.\n\n```\nimport os\nos.environ['NO_PROXY'] = '*'\n```\n\n### More examples\n\nMore examples: [HawkFlow.ai Python examples](https://github.com/hawkflow/hawkflow-examples/tree/master/python)\n\nRead the docs: [HawkFlow.ai documentation](https://docs.hawkflow.ai/)\n\n## What is HawkFlow.ai?\n\nHawkFlow.ai is a new monitoring platform that makes it easier than ever to make monitoring part of your development process. \nWhether you are an Engineer, a Data Scientist, an Analyst, or anyone else that writes code, HawkFlow.ai helps you and your team take ownership of monitoring.\n",
"bugtrack_url": null,
"license": "LICENSE",
"summary": "HawkFlow.ai apache airflow integration",
"version": "0.0.3",
"project_urls": {
"Homepage": "https://github.com/hawkflow/hawkflow-airflow"
},
"split_keywords": [
"hawkflow",
"airflow",
"monitoring"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "14e5add8c75140a84e1abd8f18d8d96660f60e5de2aa99cf85bd32fc355b48aa",
"md5": "73690f7fa95b9f774d72f9710269a7a7",
"sha256": "d7d363f26a7c6bdcb86c8718d181b786f848351b12ac7409270f31c3498489ae"
},
"downloads": -1,
"filename": "hawkflowairflow-0.0.3-py3-none-any.whl",
"has_sig": false,
"md5_digest": "73690f7fa95b9f774d72f9710269a7a7",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.7",
"size": 3992,
"upload_time": "2023-10-02T09:44:16",
"upload_time_iso_8601": "2023-10-02T09:44:16.997948Z",
"url": "https://files.pythonhosted.org/packages/14/e5/add8c75140a84e1abd8f18d8d96660f60e5de2aa99cf85bd32fc355b48aa/hawkflowairflow-0.0.3-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "d5c97ee9f39938c86f6b409f11b469c9b780b8d39fd1d54784b18807c5630a5e",
"md5": "a6dece381b7fe2571d20100a75a33899",
"sha256": "a3990251c32dca9085c48ea6356873b2b2eaea213dda762f448fd424ac64de1a"
},
"downloads": -1,
"filename": "hawkflowairflow-0.0.3.tar.gz",
"has_sig": false,
"md5_digest": "a6dece381b7fe2571d20100a75a33899",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.7",
"size": 3382,
"upload_time": "2023-10-02T09:44:18",
"upload_time_iso_8601": "2023-10-02T09:44:18.503601Z",
"url": "https://files.pythonhosted.org/packages/d5/c9/7ee9f39938c86f6b409f11b469c9b780b8d39fd1d54784b18807c5630a5e/hawkflowairflow-0.0.3.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-10-02 09:44:18",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "hawkflow",
"github_project": "hawkflow-airflow",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "hawkflowairflow"
}