hcai-discover


Namehcai-discover JSON
Version 1.0.1 PyPI version JSON
download
home_pageNone
SummaryDISCOVER is a lightweight server designed to create and manage machine learning jobs based on requests.
upload_time2024-10-15 12:06:44
maintainerNone
docs_urlNone
authorNone
requires_python>=3.9
licenseNone
keywords discover nova machine learning
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # DISCOVER - A Modular Software Framework for Human Behavior Analysis


## Overview

DISCOVER is an open-source software framework designed to facilitate computational-driven data exploration in human behavior analysis. This user-friendly and modular platform streamlines complex methodologies, enabling researchers across disciplines to engage in detailed behavioral analysis without extensive technical expertise.

Key Features

* Modularity: DISCOVER's modular architecture allows for easy integration of new features and customization.
* User-Friendliness: Intuitive interface simplifies the data exploration process, making it accessible to non-technical users.
* Flexibility: Supports a wide range of data types and analysis workflows.
* Scalability: Handles large datasets with ease.

Use Cases

* Interactive Semantic Content Exploration
* Visual Inspection
* Aided Annotation
* Multimodal Scene Search

## Getting Started

DISCOVER provides a set of blueprints for exploratory data analysis, serving as a starting point for researchers to engage in detailed behavioral analysis.

### Prerequesites

Before starting to install DISCOVER you need to install Python and FFMPEG.
While other Python versions may work as well the module is only tested for the following versions:

* 3.9.x
* 3.10.x
* 3.11.x

You can download the current version of python for your system [here](https://www.python.org/downloads/).

Download the current version off FFMPEG binaries from [here](https://github.com/BtbN/FFmpeg-Builds/releases) for your system and make sure to extract them to a place that is in your system path.
It is recommended to setup a separate virtual environment to isolate the NOVA server installation from your system python installation.
To do so, open a terminal at the directory where your virtual environment should be installed and paste the following command:

```python -m venv discover-venv```

You can then activate the virtual environment like this:

```.\discover-venv\Scripts\activate```

### Setup

Install DISCOVER using pip like this:

```pip install hcai-discover```

### Start the server

To start DISCOVER you just open a Terminal and type

```discover```

DISCOVER takes the following optional arguments as input:

```
--env: '' : Path to a dotenv file containing your server configuration

--host: 0.0.0.0 : The IP for the Server to listen

--port : 8080 : The port for the Server to be bound to

--cml_dir : cml : The cooperative machine learning directory for Nova

--data_dir : data : Directory where the Nova data resides

--cache_dir : cache : Cache directory for Models and other downloadable content

--tmp_dir : tmp : Directory to store data for temporary usage

--log_dir : log : Directory to store logfiles.
```

Internally DISCOVER converts the input to environment variables with the following names: 

```DISCOVER_SERVER_HOST```, ```DISCOVER_PORT```, ```DISCOVER_CML_DIR```, ```DISCOVER_DATA_DIR```, ```DISCOVER_TMP_DIR```, ```DISCOVER_CML_DIR```, ```DISCOVER_LOG_DIR```


All variables can be either passed directly as commandline argument, set in a [dotenv](https://hexdocs.pm/dotenvy/dotenv-file-format.html) file or as system wide environment variables.
During runtime the arguments will be prioritized in this order commandline arguments -> dotenv file -> environment variable -> default value.

If the server started successfully your console output should look like this:
```
Starting DISCOVER v1.0.0...
HOST: 0.0.0.0
PORT: 8080
DISCOVER_CML_DIR : cml
DISCOVER_DATA_DIR : data
DISCOVER_CACHE_DIR : cache
DISCOVER_TMP_DIR : tmp
DISCOVER_LOG_DIR : log
...done
```

You can find the full documentation of the project [here](https://hcmlab.github.io/discover).

## Citation
If you use DISCOVER consider citing the following paper: 

```
@article{schiller2024discover,
title={DISCOVER: A Data-driven Interactive System for Comprehensive Observation, Visualization, and ExploRation of Human Behaviour},
author={Schiller, Dominik and Hallmen, Tobias and Withanage Don, Daksitha and Andr{\'e}, Elisabeth and Baur, Tobias},
journal={arXiv e-prints},
pages={arXiv--2407},
year={2024}
}
```

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "hcai-discover",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": null,
    "keywords": "DISCOVER, NOVA, machine learning",
    "author": null,
    "author_email": "Dominik Schiller <dominik.schiller@uni-a.de>, Tobias Hallmen <tobias.hallmen@uni-a.de>, Tobias Baur <tobias.baur@uni-a.de>, Fabio Hellmann <fabio.hellmann@uni-a.de>",
    "download_url": "https://files.pythonhosted.org/packages/52/ac/e2e9054246a08816015abe4a4f18acbb37e56cceda368e2a1a26c9f5860b/hcai_discover-1.0.1.tar.gz",
    "platform": null,
    "description": "# DISCOVER - A Modular Software Framework for Human Behavior Analysis\n\n\n## Overview\n\nDISCOVER is an open-source software framework designed to facilitate computational-driven data exploration in human behavior analysis. This user-friendly and modular platform streamlines complex methodologies, enabling researchers across disciplines to engage in detailed behavioral analysis without extensive technical expertise.\n\nKey Features\n\n* Modularity: DISCOVER's modular architecture allows for easy integration of new features and customization.\n* User-Friendliness: Intuitive interface simplifies the data exploration process, making it accessible to non-technical users.\n* Flexibility: Supports a wide range of data types and analysis workflows.\n* Scalability: Handles large datasets with ease.\n\nUse Cases\n\n* Interactive Semantic Content Exploration\n* Visual Inspection\n* Aided Annotation\n* Multimodal Scene Search\n\n## Getting Started\n\nDISCOVER provides a set of blueprints for exploratory data analysis, serving as a starting point for researchers to engage in detailed behavioral analysis.\n\n### Prerequesites\n\nBefore starting to install DISCOVER you need to install Python and FFMPEG.\nWhile other Python versions may work as well the module is only tested for the following versions:\n\n* 3.9.x\n* 3.10.x\n* 3.11.x\n\nYou can download the current version of python for your system [here](https://www.python.org/downloads/).\n\nDownload the current version off FFMPEG binaries from [here](https://github.com/BtbN/FFmpeg-Builds/releases) for your system and make sure to extract them to a place that is in your system path.\nIt is recommended to setup a separate virtual environment to isolate the NOVA server installation from your system python installation.\nTo do so, open a terminal at the directory where your virtual environment should be installed and paste the following command:\n\n```python -m venv discover-venv```\n\nYou can then activate the virtual environment like this:\n\n```.\\discover-venv\\Scripts\\activate```\n\n### Setup\n\nInstall DISCOVER using pip like this:\n\n```pip install hcai-discover```\n\n### Start the server\n\nTo start DISCOVER you just open a Terminal and type\n\n```discover```\n\nDISCOVER takes the following optional arguments as input:\n\n```\n--env: '' : Path to a dotenv file containing your server configuration\n\n--host: 0.0.0.0 : The IP for the Server to listen\n\n--port : 8080 : The port for the Server to be bound to\n\n--cml_dir : cml : The cooperative machine learning directory for Nova\n\n--data_dir : data : Directory where the Nova data resides\n\n--cache_dir : cache : Cache directory for Models and other downloadable content\n\n--tmp_dir : tmp : Directory to store data for temporary usage\n\n--log_dir : log : Directory to store logfiles.\n```\n\nInternally DISCOVER converts the input to environment variables with the following names: \n\n```DISCOVER_SERVER_HOST```, ```DISCOVER_PORT```, ```DISCOVER_CML_DIR```, ```DISCOVER_DATA_DIR```, ```DISCOVER_TMP_DIR```, ```DISCOVER_CML_DIR```, ```DISCOVER_LOG_DIR```\n\n\nAll variables can be either passed directly as commandline argument, set in a [dotenv](https://hexdocs.pm/dotenvy/dotenv-file-format.html) file or as system wide environment variables.\nDuring runtime the arguments will be prioritized in this order commandline arguments -> dotenv file -> environment variable -> default value.\n\nIf the server started successfully your console output should look like this:\n```\nStarting DISCOVER v1.0.0...\nHOST: 0.0.0.0\nPORT: 8080\nDISCOVER_CML_DIR : cml\nDISCOVER_DATA_DIR : data\nDISCOVER_CACHE_DIR : cache\nDISCOVER_TMP_DIR : tmp\nDISCOVER_LOG_DIR : log\n...done\n```\n\nYou can find the full documentation of the project [here](https://hcmlab.github.io/discover).\n\n## Citation\nIf you use DISCOVER consider citing the following paper: \n\n```\n@article{schiller2024discover,\ntitle={DISCOVER: A Data-driven Interactive System for Comprehensive Observation, Visualization, and ExploRation of Human Behaviour},\nauthor={Schiller, Dominik and Hallmen, Tobias and Withanage Don, Daksitha and Andr{\\'e}, Elisabeth and Baur, Tobias},\njournal={arXiv e-prints},\npages={arXiv--2407},\nyear={2024}\n}\n```\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "DISCOVER is a lightweight server designed to create and manage machine learning jobs based on requests.",
    "version": "1.0.1",
    "project_urls": {
        "Documentation": "https://hcmlab.github.io/nova-server/docbuild/",
        "Repository": "https://github.com/hcmlab/discover"
    },
    "split_keywords": [
        "discover",
        " nova",
        " machine learning"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "e65dcbf413a840e82de689654247f1f7a4db983b01488b5c4241d09582361c04",
                "md5": "eaa758185752b40bfec362a713fe2c78",
                "sha256": "315abb6e74f61f62d4b997f3825084112a56dc6352363c7434ff0e15fba66b18"
            },
            "downloads": -1,
            "filename": "hcai_discover-1.0.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "eaa758185752b40bfec362a713fe2c78",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 58752,
            "upload_time": "2024-10-15T12:06:42",
            "upload_time_iso_8601": "2024-10-15T12:06:42.118163Z",
            "url": "https://files.pythonhosted.org/packages/e6/5d/cbf413a840e82de689654247f1f7a4db983b01488b5c4241d09582361c04/hcai_discover-1.0.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "52ace2e9054246a08816015abe4a4f18acbb37e56cceda368e2a1a26c9f5860b",
                "md5": "3ffa0ccf3135b13f93b3446a3a977563",
                "sha256": "c1a6a8cef821e16d985f5d70eabffd0cd5758943c3c978fb2fe2ca1f446cc0be"
            },
            "downloads": -1,
            "filename": "hcai_discover-1.0.1.tar.gz",
            "has_sig": false,
            "md5_digest": "3ffa0ccf3135b13f93b3446a3a977563",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 52143,
            "upload_time": "2024-10-15T12:06:44",
            "upload_time_iso_8601": "2024-10-15T12:06:44.996436Z",
            "url": "https://files.pythonhosted.org/packages/52/ac/e2e9054246a08816015abe4a4f18acbb37e56cceda368e2a1a26c9f5860b/hcai_discover-1.0.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-10-15 12:06:44",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "hcmlab",
    "github_project": "discover",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "hcai-discover"
}
        
Elapsed time: 0.36333s