hciplot


Namehciplot JSON
Version 0.2.5 PyPI version JSON
download
home_pagehttps://github.com/carlgogo/hciplot
SummaryHigh-contrast Imaging Plotting library
upload_time2023-08-01 16:22:19
maintainer
docs_urlNone
authorCarlos Alberto Gomez Gonzalez, Valentin Christiaens
requires_python
licenseMIT
keywords plotting hci package
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            [![PyPI version](https://badge.fury.io/py/hciplot.svg)](https://badge.fury.io/py/hciplot)

# HCIplot

``HCIplot`` -- High-contrast Imaging Plotting library. The goal of this
library is to be the "Swiss army" solution for plotting and visualizing 
multi-dimensional high-contrast imaging datacubes on ``JupyterLab``. 
While visualizing FITS files is straightforward with SaoImage DS9 or any
other FITS viewer, exploring the content of an HCI datacube as an 
in-memory ``numpy`` array (for example when running your ``Jupyter`` 
session on a remote machine) is far from easy. 

``HCIplot`` contains two functions, ``plot_frames`` and ``plot_cubes``,
and relies on the ``matplotlib`` and ``HoloViews`` libraries and 
``ImageMagick``. ``HCIplot`` allows to:

* Plot a single frame (2d array) or create a mosaic of frames.

![mosaic](https://github.com/carlgogo/carlgogo.github.io/blob/master/assets/images/hciplot.png?raw=true)
  
* Annotate and save publication ready frames/mosaics.

* Visualize 2d arrays as surface plots.

* Create interactive plots when handling 3d or 4d arrays (thanks to 
``HoloViews``)

![datacube](https://github.com/carlgogo/carlgogo.github.io/blob/master/assets/images/hciplot2.png?raw=true)

* Save to disk a 3d array as an animation (gif or mp4).


## Installation

You can install ``HCIplot`` with ``pip``:

```
pip install hciplot
```

``JupyterLab`` can be installed either with ``pip`` or with ``conda``:

```
conda install -c conda-forge jupyterlab
```

The ``PyViz`` extension must be installed to display the ``holoviews`` 
widgets on ``JupyterLab``:

```    
jupyter labextension install @pyviz/jupyterlab_pyviz
```

If you want to create animations with ``plot_cubes`` you need to install
``ImageMagick`` with your system's package manager (e.g. brew if you are 
on MacOS or apt-get if you are on Ubuntu). 

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/carlgogo/hciplot",
    "name": "hciplot",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "plotting,hci,package",
    "author": "Carlos Alberto Gomez Gonzalez, Valentin Christiaens",
    "author_email": "valentinchrist@hotmail.com",
    "download_url": "https://files.pythonhosted.org/packages/03/a3/1eda051ae8e5035e2ebd56ca1316690527e0403bacc66c97f4f6cc2ee843/hciplot-0.2.5.tar.gz",
    "platform": null,
    "description": "[![PyPI version](https://badge.fury.io/py/hciplot.svg)](https://badge.fury.io/py/hciplot)\n\n# HCIplot\n\n``HCIplot`` -- High-contrast Imaging Plotting library. The goal of this\nlibrary is to be the \"Swiss army\" solution for plotting and visualizing \nmulti-dimensional high-contrast imaging datacubes on ``JupyterLab``. \nWhile visualizing FITS files is straightforward with SaoImage DS9 or any\nother FITS viewer, exploring the content of an HCI datacube as an \nin-memory ``numpy`` array (for example when running your ``Jupyter`` \nsession on a remote machine) is far from easy. \n\n``HCIplot`` contains two functions, ``plot_frames`` and ``plot_cubes``,\nand relies on the ``matplotlib`` and ``HoloViews`` libraries and \n``ImageMagick``. ``HCIplot`` allows to:\n\n* Plot a single frame (2d array) or create a mosaic of frames.\n\n![mosaic](https://github.com/carlgogo/carlgogo.github.io/blob/master/assets/images/hciplot.png?raw=true)\n  \n* Annotate and save publication ready frames/mosaics.\n\n* Visualize 2d arrays as surface plots.\n\n* Create interactive plots when handling 3d or 4d arrays (thanks to \n``HoloViews``)\n\n![datacube](https://github.com/carlgogo/carlgogo.github.io/blob/master/assets/images/hciplot2.png?raw=true)\n\n* Save to disk a 3d array as an animation (gif or mp4).\n\n\n## Installation\n\nYou can install ``HCIplot`` with ``pip``:\n\n```\npip install hciplot\n```\n\n``JupyterLab`` can be installed either with ``pip`` or with ``conda``:\n\n```\nconda install -c conda-forge jupyterlab\n```\n\nThe ``PyViz`` extension must be installed to display the ``holoviews`` \nwidgets on ``JupyterLab``:\n\n```    \njupyter labextension install @pyviz/jupyterlab_pyviz\n```\n\nIf you want to create animations with ``plot_cubes`` you need to install\n``ImageMagick`` with your system's package manager (e.g. brew if you are \non MacOS or apt-get if you are on Ubuntu). \n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "High-contrast Imaging Plotting library",
    "version": "0.2.5",
    "project_urls": {
        "Download": "https://github.com/carlgogo/hciplot/archive/refs/tags/v0.1.8.tar.gz",
        "Homepage": "https://github.com/carlgogo/hciplot"
    },
    "split_keywords": [
        "plotting",
        "hci",
        "package"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "b2fcc99239d855245827b4cdc13a4f68aa0e9545c4b69c98dd35f939baf30c5a",
                "md5": "04b12c433e5eb6b7f92df7d123bc3d0a",
                "sha256": "f68ea82bd02db21126aa831021a0a509f60d4afaced553fde49bbef917d48ae9"
            },
            "downloads": -1,
            "filename": "hciplot-0.2.5-py2.py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "04b12c433e5eb6b7f92df7d123bc3d0a",
            "packagetype": "bdist_wheel",
            "python_version": "py2.py3",
            "requires_python": null,
            "size": 15122,
            "upload_time": "2023-08-01T16:22:17",
            "upload_time_iso_8601": "2023-08-01T16:22:17.555034Z",
            "url": "https://files.pythonhosted.org/packages/b2/fc/c99239d855245827b4cdc13a4f68aa0e9545c4b69c98dd35f939baf30c5a/hciplot-0.2.5-py2.py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "03a31eda051ae8e5035e2ebd56ca1316690527e0403bacc66c97f4f6cc2ee843",
                "md5": "e9370e84b0b2db9d2c4b3a0611bad2c6",
                "sha256": "e018f9a2c795db42a0006b06f5c430e7b6a488fd3773da5ab49b51a4baabe38f"
            },
            "downloads": -1,
            "filename": "hciplot-0.2.5.tar.gz",
            "has_sig": false,
            "md5_digest": "e9370e84b0b2db9d2c4b3a0611bad2c6",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 17514,
            "upload_time": "2023-08-01T16:22:19",
            "upload_time_iso_8601": "2023-08-01T16:22:19.500123Z",
            "url": "https://files.pythonhosted.org/packages/03/a3/1eda051ae8e5035e2ebd56ca1316690527e0403bacc66c97f4f6cc2ee843/hciplot-0.2.5.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-08-01 16:22:19",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "carlgogo",
    "github_project": "hciplot",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [],
    "lcname": "hciplot"
}
        
Elapsed time: 0.10441s