headpose-detection


Nameheadpose-detection JSON
Version 0.0.4 PyPI version JSON
download
home_pagehttps://github.com/geekysethi/headpose_estimation
SummaryHead pose estimation module
upload_time2022-12-05 14:47:24
maintainer
docs_urlNone
authorAshish Sethi
requires_python
license
keywords python image face detection headpose estimation machine learning computer vision
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # State of art the Head Pose Estimation in Tensorflow2 

This repository includes:
- ["WHENet: Real-time Fine-Grained Estimation for Wide Range Head Pose" (BMVC 2020).](https://www.bmvc2020-conference.com/assets/papers/0907.pdf) adapted from the [original source code](https://github.com/Ascend-Research/HeadPoseEstimation-WHENet).


- [RetinaFace: Single-stage Dense Face Localisation in the Wild](https://arxiv.org/abs/1905.00641) adapted from https://github.com/StanislasBertrand/RetinaFace-tf2.





<img src=images/output.png height="220"/> 



## Install

You can install this repository with pip (requires python>=3.6);

```
pip install headpose_estimation
```

```bash
pip install git+https://github.com/geekysethi/headpose_estimation
```

You can also install with the `setup.py`

##  With Face Detection
To perform detection you can simple use the following lines:

```python
import cv2
from headpose_estimation import Headpose
headpose = Headpose()
img = cv2.imread("path_to_im.jpg")
detections,image = headpose.run(img)
```

This will return a list of dictionary which looks like this `[{'bbox': [xmin, ymin, xmax, ymax], 'yaw': yaw_value, 'pitch': pitch_value, 'roll': roll_value}`


##  Without Face Detection
To perform detection you can simple use the following lines:

```python
import cv2
from headpose_estimation import Headpose
headpose = Headpose(face_detection=False)
imgcrop = cv2.imread("path_to_im.jpg")
detections,image = headpose.run(imgcrop)
```

In this case it will return a list of dictionary which looks like this `[{'yaw': yaw_value, 'pitch': pitch_value, 'roll': roll_value}`

## Dependncies
* EfficientNet https://github.com/qubvel/efficientnet

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/geekysethi/headpose_estimation",
    "name": "headpose-detection",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "python,image,face detection,headpose estimation,machine learning,computer vision",
    "author": "Ashish Sethi",
    "author_email": "<ashish18024@iiitd.ac.in>",
    "download_url": "https://files.pythonhosted.org/packages/35/e2/c51e37da9136df34485c7d16cf5cf2b6739cb751cad3f6760c956fc9068c/headpose_detection-0.0.4.tar.gz",
    "platform": null,
    "description": "# State of art the Head Pose Estimation in Tensorflow2 \n\nThis repository includes:\n- [\"WHENet: Real-time Fine-Grained Estimation for Wide Range Head Pose\" (BMVC 2020).](https://www.bmvc2020-conference.com/assets/papers/0907.pdf) adapted from the [original source code](https://github.com/Ascend-Research/HeadPoseEstimation-WHENet).\n\n\n- [RetinaFace: Single-stage Dense Face Localisation in the Wild](https://arxiv.org/abs/1905.00641) adapted from https://github.com/StanislasBertrand/RetinaFace-tf2.\n\n\n\n\n\n<img src=images/output.png height=\"220\"/> \n\n\n\n## Install\n\nYou can install this repository with pip (requires python>=3.6);\n\n```\npip install headpose_estimation\n```\n\n```bash\npip install git+https://github.com/geekysethi/headpose_estimation\n```\n\nYou can also install with the `setup.py`\n\n##  With Face Detection\nTo perform detection you can simple use the following lines:\n\n```python\nimport cv2\nfrom headpose_estimation import Headpose\nheadpose = Headpose()\nimg = cv2.imread(\"path_to_im.jpg\")\ndetections,image = headpose.run(img)\n```\n\nThis will return a list of dictionary which looks like this `[{'bbox': [xmin, ymin, xmax, ymax], 'yaw': yaw_value, 'pitch': pitch_value, 'roll': roll_value}`\n\n\n##  Without Face Detection\nTo perform detection you can simple use the following lines:\n\n```python\nimport cv2\nfrom headpose_estimation import Headpose\nheadpose = Headpose(face_detection=False)\nimgcrop = cv2.imread(\"path_to_im.jpg\")\ndetections,image = headpose.run(imgcrop)\n```\n\nIn this case it will return a list of dictionary which looks like this `[{'yaw': yaw_value, 'pitch': pitch_value, 'roll': roll_value}`\n\n## Dependncies\n* EfficientNet https://github.com/qubvel/efficientnet\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "Head pose estimation module",
    "version": "0.0.4",
    "split_keywords": [
        "python",
        "image",
        "face detection",
        "headpose estimation",
        "machine learning",
        "computer vision"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "md5": "b550e9f044ca9d69d0f21612ea4d15ac",
                "sha256": "647e9ad232c380419665179d6f3ca1668d949b3f33ba7ff260a2a53a802fc9b6"
            },
            "downloads": -1,
            "filename": "headpose_detection-0.0.4-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "b550e9f044ca9d69d0f21612ea4d15ac",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 16309935,
            "upload_time": "2022-12-05T14:47:18",
            "upload_time_iso_8601": "2022-12-05T14:47:18.215848Z",
            "url": "https://files.pythonhosted.org/packages/31/aa/2b359cb464ec91305d496d33a830fd453aeb1f74a5393fa0312d093d42c6/headpose_detection-0.0.4-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "md5": "4c748a13e23d5ccf4aa6b51c5bda8191",
                "sha256": "978cfbbaa03ce8611dfecc18d3773f4360dfe6d7dbe856abc4f57c997b5d33fc"
            },
            "downloads": -1,
            "filename": "headpose_detection-0.0.4.tar.gz",
            "has_sig": false,
            "md5_digest": "4c748a13e23d5ccf4aa6b51c5bda8191",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 16307006,
            "upload_time": "2022-12-05T14:47:24",
            "upload_time_iso_8601": "2022-12-05T14:47:24.230022Z",
            "url": "https://files.pythonhosted.org/packages/35/e2/c51e37da9136df34485c7d16cf5cf2b6739cb751cad3f6760c956fc9068c/headpose_detection-0.0.4.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2022-12-05 14:47:24",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "geekysethi",
    "github_project": "headpose_estimation",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [],
    "lcname": "headpose-detection"
}
        
Elapsed time: 0.01628s