Name | heyoka JSON |
Version |
7.2.2
JSON |
| download |
home_page | None |
Summary | Python library for ODE integration via Taylor's method and LLVM |
upload_time | 2025-02-01 12:38:04 |
maintainer | None |
docs_url | None |
author | None |
requires_python | >=3.9 |
license | MPL-2.0 |
keywords |
science
math
physics
ode
|
VCS |
 |
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
|
coveralls test coverage |
No coveralls.
|
heyoka.py
=========
[](https://circleci.com/gh/bluescarni/heyoka.py)
[](https://github.com/bluescarni/heyoka.py/actions?query=workflow%3A%22GitHub+CI%22)
[](https://anaconda.org/conda-forge/heyoka.py)
[](https://pypi.python.org/pypi/heyoka)
<!-- PROJECT LOGO -->
<br />
<p align="center">
<a href="https://github.com/bluescarni/heyoka.py">
<img src="doc/images/white_logo.png" alt="Logo" width="280">
</a>
<p align="center">
Modern Taylor's method via just-in-time compilation
<br />
<a href="https://bluescarni.github.io/heyoka.py/index.html"><strong>Explore the docs »</strong></a>
<br />
<br />
<a href="https://github.com/bluescarni/heyoka.py/issues/new/choose">Report bug</a>
·
<a href="https://github.com/bluescarni/heyoka.py/issues/new/choose">Request feature</a>
·
<a href="https://github.com/bluescarni/heyoka.py/discussions">Discuss</a>
</p>
</p>
> The [heyókȟa](https://en.wikipedia.org/wiki/Heyoka>) [...] is a kind of
> sacred clown in the culture of the Sioux (Lakota and Dakota people)
> of the Great Plains of North America. The heyoka is a contrarian, jester,
> and satirist, who speaks, moves and reacts in an opposite fashion to the
> people around them.
heyoka.py is a Python library for the integration of ordinary differential equations
(ODEs) via Taylor's method, based on automatic differentiation techniques and aggressive just-in-time
compilation via [LLVM](https://llvm.org/). Notable features include:
* support for single-precision, double-precision, extended-precision (80-bit and 128-bit),
and arbitrary-precision floating-point types,
* high-precision zero-cost dense output,
* accurate and reliable event detection,
* builtin support for analytical mechanics - bring your own Lagrangians/Hamiltonians
and let heyoka.py formulate and solve the equations of motion,
* builtin support for high-order variational equations - compute not only the solution,
but also its partial derivatives,
* builtin support for machine learning applications via neural network models,
* the ability to maintain machine precision accuracy over
tens of billions of timesteps,
* batch mode integration to harness the power of modern
[SIMD](https://en.wikipedia.org/wiki/SIMD) instruction sets
(including AVX/AVX2/AVX-512/Neon/VSX),
* ensemble simulations and automatic parallelisation,
* interoperability with [SymPy](https://www.sympy.org/en/index.html).
heyoka.py is based on the [heyoka C++ library](https://github.com/bluescarni/heyoka).
If you are using heyoka.py as part of your research, teaching, or other activities, we would be grateful if you could star
the repository and/or cite our work. For citation purposes, you can use the following BibTex entry, which refers
to the heyoka.py paper ([arXiv preprint](https://arxiv.org/abs/2105.00800)):
```bibtex
@article{10.1093/mnras/stab1032,
author = {Biscani, Francesco and Izzo, Dario},
title = "{Revisiting high-order Taylor methods for astrodynamics and celestial mechanics}",
journal = {Monthly Notices of the Royal Astronomical Society},
volume = {504},
number = {2},
pages = {2614-2628},
year = {2021},
month = {04},
issn = {0035-8711},
doi = {10.1093/mnras/stab1032},
url = {https://doi.org/10.1093/mnras/stab1032},
eprint = {https://academic.oup.com/mnras/article-pdf/504/2/2614/37750349/stab1032.pdf}
}
```
heyoka.py's novel event detection system is described in the following paper ([arXiv preprint](https://arxiv.org/abs/2204.09948)):
```bibtex
@article{10.1093/mnras/stac1092,
author = {Biscani, Francesco and Izzo, Dario},
title = "{Reliable event detection for Taylor methods in astrodynamics}",
journal = {Monthly Notices of the Royal Astronomical Society},
volume = {513},
number = {4},
pages = {4833-4844},
year = {2022},
month = {04},
issn = {0035-8711},
doi = {10.1093/mnras/stac1092},
url = {https://doi.org/10.1093/mnras/stac1092},
eprint = {https://academic.oup.com/mnras/article-pdf/513/4/4833/43796551/stac1092.pdf}
}
```
Installation
------------
Via pip:
```console
$ pip install heyoka
```
Via conda + [conda-forge](https://conda-forge.org/):
```console
$ conda install heyoka.py
```
Documentation
-------------
The full documentation can be found [here](https://bluescarni.github.io/heyoka.py/).
Authors
-------
* Francesco Biscani (European Space Agency)
* Dario Izzo (European Space Agency)
License
-------
heyoka.py is released under the [MPL-2.0](https://www.mozilla.org/en-US/MPL/2.0/FAQ/)
license.
Raw data
{
"_id": null,
"home_page": null,
"name": "heyoka",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.9",
"maintainer_email": null,
"keywords": "science, math, physics, ode",
"author": null,
"author_email": "Francesco Biscani <bluescarni@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/49/2b/76c982e1924dd0b8a2b749a1469377fc6422491d8191fbfccd29e580dd4a/heyoka-7.2.2.tar.gz",
"platform": null,
"description": "heyoka.py\n=========\n\n[](https://circleci.com/gh/bluescarni/heyoka.py)\n[](https://github.com/bluescarni/heyoka.py/actions?query=workflow%3A%22GitHub+CI%22)\n\n[](https://anaconda.org/conda-forge/heyoka.py)\n[](https://pypi.python.org/pypi/heyoka)\n\n<!-- PROJECT LOGO -->\n<br />\n<p align=\"center\">\n <a href=\"https://github.com/bluescarni/heyoka.py\">\n <img src=\"doc/images/white_logo.png\" alt=\"Logo\" width=\"280\">\n </a>\n <p align=\"center\">\n Modern Taylor's method via just-in-time compilation\n <br />\n <a href=\"https://bluescarni.github.io/heyoka.py/index.html\"><strong>Explore the docs \u00bb</strong></a>\n <br />\n <br />\n <a href=\"https://github.com/bluescarni/heyoka.py/issues/new/choose\">Report bug</a>\n \u00b7\n <a href=\"https://github.com/bluescarni/heyoka.py/issues/new/choose\">Request feature</a>\n \u00b7\n <a href=\"https://github.com/bluescarni/heyoka.py/discussions\">Discuss</a>\n </p>\n</p>\n\n> The [hey\u00f3k\u021fa](https://en.wikipedia.org/wiki/Heyoka>) [...] is a kind of\n> sacred clown in the culture of the Sioux (Lakota and Dakota people)\n> of the Great Plains of North America. The heyoka is a contrarian, jester,\n> and satirist, who speaks, moves and reacts in an opposite fashion to the\n> people around them.\n\nheyoka.py is a Python library for the integration of ordinary differential equations\n(ODEs) via Taylor's method, based on automatic differentiation techniques and aggressive just-in-time\ncompilation via [LLVM](https://llvm.org/). Notable features include:\n\n* support for single-precision, double-precision, extended-precision (80-bit and 128-bit),\n and arbitrary-precision floating-point types,\n* high-precision zero-cost dense output,\n* accurate and reliable event detection,\n* builtin support for analytical mechanics - bring your own Lagrangians/Hamiltonians\n and let heyoka.py formulate and solve the equations of motion,\n* builtin support for high-order variational equations - compute not only the solution,\n but also its partial derivatives,\n* builtin support for machine learning applications via neural network models,\n* the ability to maintain machine precision accuracy over\n tens of billions of timesteps,\n* batch mode integration to harness the power of modern\n [SIMD](https://en.wikipedia.org/wiki/SIMD) instruction sets\n (including AVX/AVX2/AVX-512/Neon/VSX),\n* ensemble simulations and automatic parallelisation,\n* interoperability with [SymPy](https://www.sympy.org/en/index.html).\n\nheyoka.py is based on the [heyoka C++ library](https://github.com/bluescarni/heyoka).\n\nIf you are using heyoka.py as part of your research, teaching, or other activities, we would be grateful if you could star\nthe repository and/or cite our work. For citation purposes, you can use the following BibTex entry, which refers\nto the heyoka.py paper ([arXiv preprint](https://arxiv.org/abs/2105.00800)):\n\n```bibtex\n@article{10.1093/mnras/stab1032,\n author = {Biscani, Francesco and Izzo, Dario},\n title = \"{Revisiting high-order Taylor methods for astrodynamics and celestial mechanics}\",\n journal = {Monthly Notices of the Royal Astronomical Society},\n volume = {504},\n number = {2},\n pages = {2614-2628},\n year = {2021},\n month = {04},\n issn = {0035-8711},\n doi = {10.1093/mnras/stab1032},\n url = {https://doi.org/10.1093/mnras/stab1032},\n eprint = {https://academic.oup.com/mnras/article-pdf/504/2/2614/37750349/stab1032.pdf}\n}\n```\n\nheyoka.py's novel event detection system is described in the following paper ([arXiv preprint](https://arxiv.org/abs/2204.09948)):\n\n```bibtex\n@article{10.1093/mnras/stac1092,\n author = {Biscani, Francesco and Izzo, Dario},\n title = \"{Reliable event detection for Taylor methods in astrodynamics}\",\n journal = {Monthly Notices of the Royal Astronomical Society},\n volume = {513},\n number = {4},\n pages = {4833-4844},\n year = {2022},\n month = {04},\n issn = {0035-8711},\n doi = {10.1093/mnras/stac1092},\n url = {https://doi.org/10.1093/mnras/stac1092},\n eprint = {https://academic.oup.com/mnras/article-pdf/513/4/4833/43796551/stac1092.pdf}\n}\n```\n\nInstallation\n------------\n\nVia pip:\n\n```console\n$ pip install heyoka\n```\n\nVia conda + [conda-forge](https://conda-forge.org/):\n\n```console\n$ conda install heyoka.py\n```\n\nDocumentation\n-------------\n\nThe full documentation can be found [here](https://bluescarni.github.io/heyoka.py/).\n\nAuthors\n-------\n\n* Francesco Biscani (European Space Agency)\n* Dario Izzo (European Space Agency)\n\nLicense\n-------\n\nheyoka.py is released under the [MPL-2.0](https://www.mozilla.org/en-US/MPL/2.0/FAQ/)\nlicense.\n",
"bugtrack_url": null,
"license": "MPL-2.0",
"summary": "Python library for ODE integration via Taylor's method and LLVM",
"version": "7.2.2",
"project_urls": {
"Documentation": "https://bluescarni.github.io/heyoka.py/index.html",
"Repository": "https://github.com/bluescarni/heyoka.py"
},
"split_keywords": [
"science",
" math",
" physics",
" ode"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "c9e819e172d89d2840e48bab9e6d28de3980d5c02a6f902563341275942f22cb",
"md5": "77397679b650cd3bb645b47a2506a51a",
"sha256": "3bbc585a2bd2b61376cde88b327d650d793cf01b17059b6dcd12c9357252ec4d"
},
"downloads": -1,
"filename": "heyoka-7.2.2-cp310-cp310-manylinux_2_28_aarch64.whl",
"has_sig": false,
"md5_digest": "77397679b650cd3bb645b47a2506a51a",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.9",
"size": 98890128,
"upload_time": "2025-02-01T12:37:50",
"upload_time_iso_8601": "2025-02-01T12:37:50.918404Z",
"url": "https://files.pythonhosted.org/packages/c9/e8/19e172d89d2840e48bab9e6d28de3980d5c02a6f902563341275942f22cb/heyoka-7.2.2-cp310-cp310-manylinux_2_28_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "c5509fbb3d0fa34dbf774a31105d63c71f3e49891af292291803416cf1d065e7",
"md5": "d95c199f0179ada2d034b67437d17380",
"sha256": "2932c017f8eec22eb2699d680bac0ddd3f305f36a5d92a402d11b14fef85cb2e"
},
"downloads": -1,
"filename": "heyoka-7.2.2-cp310-cp310-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "d95c199f0179ada2d034b67437d17380",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.9",
"size": 101554615,
"upload_time": "2025-02-01T12:42:40",
"upload_time_iso_8601": "2025-02-01T12:42:40.924524Z",
"url": "https://files.pythonhosted.org/packages/c5/50/9fbb3d0fa34dbf774a31105d63c71f3e49891af292291803416cf1d065e7/heyoka-7.2.2-cp310-cp310-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "2236570bc7138c321cf2da72e4a1d04735338977ae302cda0ea2bb16ddd0aa6d",
"md5": "c0b98ba759403f73e949039d2faa0c9c",
"sha256": "1f10d995ff46f58508e10b9b09a72e4a33b2cd95e94fc2997e145411da473a42"
},
"downloads": -1,
"filename": "heyoka-7.2.2-cp311-cp311-manylinux_2_28_aarch64.whl",
"has_sig": false,
"md5_digest": "c0b98ba759403f73e949039d2faa0c9c",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.9",
"size": 98891259,
"upload_time": "2025-02-01T12:37:43",
"upload_time_iso_8601": "2025-02-01T12:37:43.707363Z",
"url": "https://files.pythonhosted.org/packages/22/36/570bc7138c321cf2da72e4a1d04735338977ae302cda0ea2bb16ddd0aa6d/heyoka-7.2.2-cp311-cp311-manylinux_2_28_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "ec01240f70c81c1d5ca0e4fa1dff79fbfc8de1b6b4410824b54177b67e0b69af",
"md5": "c2319cc52c5c4757efe6a4a5026b99d4",
"sha256": "75b5c5e95970bf2ab54274cf2e19091e28e0c6b724a6689068d32ec12bd94a68"
},
"downloads": -1,
"filename": "heyoka-7.2.2-cp311-cp311-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "c2319cc52c5c4757efe6a4a5026b99d4",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.9",
"size": 101556058,
"upload_time": "2025-02-01T12:45:29",
"upload_time_iso_8601": "2025-02-01T12:45:29.395111Z",
"url": "https://files.pythonhosted.org/packages/ec/01/240f70c81c1d5ca0e4fa1dff79fbfc8de1b6b4410824b54177b67e0b69af/heyoka-7.2.2-cp311-cp311-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "c879f6d0f841b7afe0983dca255f8a7a6443c78cf9b829a0a72d0b3aab045a08",
"md5": "6302f72d086e4d62b2e9ee825afbe1dc",
"sha256": "7e894504e35a687c8b30e515825c22158704b55a30cacd8f69e776aedfd76da8"
},
"downloads": -1,
"filename": "heyoka-7.2.2-cp312-cp312-manylinux_2_28_aarch64.whl",
"has_sig": false,
"md5_digest": "6302f72d086e4d62b2e9ee825afbe1dc",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.9",
"size": 98889349,
"upload_time": "2025-02-01T12:40:38",
"upload_time_iso_8601": "2025-02-01T12:40:38.302453Z",
"url": "https://files.pythonhosted.org/packages/c8/79/f6d0f841b7afe0983dca255f8a7a6443c78cf9b829a0a72d0b3aab045a08/heyoka-7.2.2-cp312-cp312-manylinux_2_28_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "61f5af2ad013323aa6cc8545dc45caa3cd51c482d4a18ad2c32d9a26859e930b",
"md5": "aaaad918ceca6059c328c4ad76ffb45b",
"sha256": "c6f74b8b0eef3d25c340ee0e6fac9e5ea9d5d03a1a793154c3e3fe4c7ab586cd"
},
"downloads": -1,
"filename": "heyoka-7.2.2-cp312-cp312-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "aaaad918ceca6059c328c4ad76ffb45b",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.9",
"size": 101560527,
"upload_time": "2025-02-01T12:45:16",
"upload_time_iso_8601": "2025-02-01T12:45:16.071872Z",
"url": "https://files.pythonhosted.org/packages/61/f5/af2ad013323aa6cc8545dc45caa3cd51c482d4a18ad2c32d9a26859e930b/heyoka-7.2.2-cp312-cp312-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "8344c1a450afef816b96a75b839e9120c6f33d8ec1ef4aac1d589a835cbc53bc",
"md5": "257286bf858fecc884b99ffba5a5d5bb",
"sha256": "72a6df7ca52237f964a03c02f35445bb778af0e27e2cd59cc17f951144572b6d"
},
"downloads": -1,
"filename": "heyoka-7.2.2-cp313-cp313-manylinux_2_28_aarch64.whl",
"has_sig": false,
"md5_digest": "257286bf858fecc884b99ffba5a5d5bb",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": ">=3.9",
"size": 98889566,
"upload_time": "2025-02-01T12:40:56",
"upload_time_iso_8601": "2025-02-01T12:40:56.824247Z",
"url": "https://files.pythonhosted.org/packages/83/44/c1a450afef816b96a75b839e9120c6f33d8ec1ef4aac1d589a835cbc53bc/heyoka-7.2.2-cp313-cp313-manylinux_2_28_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "4039ddb3d0a371b79b899c53011120fc099380d3661b3d93f486ae5c043362d3",
"md5": "78d5ad7df46a3719de5e97260fca752f",
"sha256": "0b7103328fb0717f5198cf0b969837bd64cd0362e4d6049b09581b3a51064b00"
},
"downloads": -1,
"filename": "heyoka-7.2.2-cp313-cp313-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "78d5ad7df46a3719de5e97260fca752f",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": ">=3.9",
"size": 101560008,
"upload_time": "2025-02-01T12:45:18",
"upload_time_iso_8601": "2025-02-01T12:45:18.072590Z",
"url": "https://files.pythonhosted.org/packages/40/39/ddb3d0a371b79b899c53011120fc099380d3661b3d93f486ae5c043362d3/heyoka-7.2.2-cp313-cp313-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "492b76c982e1924dd0b8a2b749a1469377fc6422491d8191fbfccd29e580dd4a",
"md5": "ca89bf3f31936de9d8160897932a06b9",
"sha256": "015d45f3b5d67ddb584a21dd6ff67dc0a092371eef2e860522569df2abdd346e"
},
"downloads": -1,
"filename": "heyoka-7.2.2.tar.gz",
"has_sig": false,
"md5_digest": "ca89bf3f31936de9d8160897932a06b9",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.9",
"size": 1660115,
"upload_time": "2025-02-01T12:38:04",
"upload_time_iso_8601": "2025-02-01T12:38:04.314103Z",
"url": "https://files.pythonhosted.org/packages/49/2b/76c982e1924dd0b8a2b749a1469377fc6422491d8191fbfccd29e580dd4a/heyoka-7.2.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-02-01 12:38:04",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "bluescarni",
"github_project": "heyoka.py",
"travis_ci": true,
"coveralls": false,
"github_actions": true,
"circle": true,
"lcname": "heyoka"
}