heyoka


Nameheyoka JSON
Version 6.1.1 PyPI version JSON
download
home_pageNone
SummaryPython library for ODE integration via Taylor's method and LLVM
upload_time2024-10-10 13:37:30
maintainerNone
docs_urlNone
authorDario Izzo
requires_python>=3.5
licenseMPL-2.0
keywords science math physics ode
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI
coveralls test coverage No coveralls.
            heyoka.py
=========

[![Build Status](https://img.shields.io/circleci/project/github/bluescarni/heyoka.py/main.svg?style=for-the-badge)](https://circleci.com/gh/bluescarni/heyoka.py)
[![Build Status](https://img.shields.io/github/actions/workflow/status/bluescarni/heyoka.py/gh_actions_ci.yml?branch=main&style=for-the-badge)](https://github.com/bluescarni/heyoka.py/actions?query=workflow%3A%22GitHub+CI%22)

[![Anaconda-Server Badge](https://img.shields.io/conda/vn/conda-forge/heyoka.py.svg?style=for-the-badge)](https://anaconda.org/conda-forge/heyoka.py)
[![PyPI](https://img.shields.io/pypi/v/heyoka.svg?style=for-the-badge)](https://pypi.python.org/pypi/heyoka)

<!-- PROJECT LOGO -->
<br />
<p align="center">
  <a href="https://github.com/bluescarni/heyoka.py">
    <img src="doc/images/white_logo.png" alt="Logo" width="280">
  </a>
  <p align="center">
    Modern Taylor's method via just-in-time compilation
    <br />
    <a href="https://bluescarni.github.io/heyoka.py/index.html"><strong>Explore the docs »</strong></a>
    <br />
    <br />
    <a href="https://github.com/bluescarni/heyoka.py/issues/new/choose">Report bug</a>
    ·
    <a href="https://github.com/bluescarni/heyoka.py/issues/new/choose">Request feature</a>
    ·
    <a href="https://github.com/bluescarni/heyoka.py/discussions">Discuss</a>
  </p>
</p>

> The [heyókȟa](https://en.wikipedia.org/wiki/Heyoka>) [...] is a kind of
> sacred clown in the culture of the Sioux (Lakota and Dakota people)
> of the Great Plains of North America. The heyoka is a contrarian, jester,
> and satirist, who speaks, moves and reacts in an opposite fashion to the
> people around them.

heyoka.py is a Python library for the integration of ordinary differential equations
(ODEs) via Taylor's method, based on automatic differentiation techniques and aggressive just-in-time
compilation via [LLVM](https://llvm.org/). Notable features include:

* support for single-precision, double-precision, extended-precision (80-bit and 128-bit),
  and arbitrary-precision floating-point types,
* high-precision zero-cost dense output,
* accurate and reliable event detection,
* builtin support for analytical mechanics - bring your own Lagrangians/Hamiltonians
  and let heyoka.py formulate and solve the equations of motion,
* builtin support for high-order variational equations - compute not only the solution,
  but also its partial derivatives,
* builtin support for machine learning applications via neural network models,
* the ability to maintain machine precision accuracy over
  tens of billions of timesteps,
* batch mode integration to harness the power of modern
  [SIMD](https://en.wikipedia.org/wiki/SIMD) instruction sets
  (including AVX/AVX2/AVX-512/Neon/VSX),
* ensemble simulations and automatic parallelisation,
* interoperability with [SymPy](https://www.sympy.org/en/index.html).

heyoka.py is based on the [heyoka C++ library](https://github.com/bluescarni/heyoka).

If you are using heyoka.py as part of your research, teaching, or other activities, we would be grateful if you could star
the repository and/or cite our work. For citation purposes, you can use the following BibTex entry, which refers
to the heyoka.py paper ([arXiv preprint](https://arxiv.org/abs/2105.00800)):

```bibtex
@article{10.1093/mnras/stab1032,
    author = {Biscani, Francesco and Izzo, Dario},
    title = "{Revisiting high-order Taylor methods for astrodynamics and celestial mechanics}",
    journal = {Monthly Notices of the Royal Astronomical Society},
    volume = {504},
    number = {2},
    pages = {2614-2628},
    year = {2021},
    month = {04},
    issn = {0035-8711},
    doi = {10.1093/mnras/stab1032},
    url = {https://doi.org/10.1093/mnras/stab1032},
    eprint = {https://academic.oup.com/mnras/article-pdf/504/2/2614/37750349/stab1032.pdf}
}
```

heyoka.py's novel event detection system is described in the following paper ([arXiv preprint](https://arxiv.org/abs/2204.09948)):

```bibtex
@article{10.1093/mnras/stac1092,
    author = {Biscani, Francesco and Izzo, Dario},
    title = "{Reliable event detection for Taylor methods in astrodynamics}",
    journal = {Monthly Notices of the Royal Astronomical Society},
    volume = {513},
    number = {4},
    pages = {4833-4844},
    year = {2022},
    month = {04},
    issn = {0035-8711},
    doi = {10.1093/mnras/stac1092},
    url = {https://doi.org/10.1093/mnras/stac1092},
    eprint = {https://academic.oup.com/mnras/article-pdf/513/4/4833/43796551/stac1092.pdf}
}
```

Installation
------------

Via pip:

```console
$ pip install heyoka
```

Via conda + [conda-forge](https://conda-forge.org/):

```console
$ conda install heyoka.py
```

Documentation
-------------

The full documentation can be found [here](https://bluescarni.github.io/heyoka.py/).

Authors
-------

* Francesco Biscani (European Space Agency)
* Dario Izzo (European Space Agency)

License
-------

heyoka.py is released under the [MPL-2.0](https://www.mozilla.org/en-US/MPL/2.0/FAQ/)
license.

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "heyoka",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.5",
    "maintainer_email": null,
    "keywords": "science, math, physics, ode",
    "author": "Dario Izzo",
    "author_email": "Francesco Biscarni <bluescarni@gmail.com>",
    "download_url": null,
    "platform": null,
    "description": "heyoka.py\n=========\n\n[![Build Status](https://img.shields.io/circleci/project/github/bluescarni/heyoka.py/main.svg?style=for-the-badge)](https://circleci.com/gh/bluescarni/heyoka.py)\n[![Build Status](https://img.shields.io/github/actions/workflow/status/bluescarni/heyoka.py/gh_actions_ci.yml?branch=main&style=for-the-badge)](https://github.com/bluescarni/heyoka.py/actions?query=workflow%3A%22GitHub+CI%22)\n\n[![Anaconda-Server Badge](https://img.shields.io/conda/vn/conda-forge/heyoka.py.svg?style=for-the-badge)](https://anaconda.org/conda-forge/heyoka.py)\n[![PyPI](https://img.shields.io/pypi/v/heyoka.svg?style=for-the-badge)](https://pypi.python.org/pypi/heyoka)\n\n<!-- PROJECT LOGO -->\n<br />\n<p align=\"center\">\n  <a href=\"https://github.com/bluescarni/heyoka.py\">\n    <img src=\"doc/images/white_logo.png\" alt=\"Logo\" width=\"280\">\n  </a>\n  <p align=\"center\">\n    Modern Taylor's method via just-in-time compilation\n    <br />\n    <a href=\"https://bluescarni.github.io/heyoka.py/index.html\"><strong>Explore the docs \u00bb</strong></a>\n    <br />\n    <br />\n    <a href=\"https://github.com/bluescarni/heyoka.py/issues/new/choose\">Report bug</a>\n    \u00b7\n    <a href=\"https://github.com/bluescarni/heyoka.py/issues/new/choose\">Request feature</a>\n    \u00b7\n    <a href=\"https://github.com/bluescarni/heyoka.py/discussions\">Discuss</a>\n  </p>\n</p>\n\n> The [hey\u00f3k\u021fa](https://en.wikipedia.org/wiki/Heyoka>) [...] is a kind of\n> sacred clown in the culture of the Sioux (Lakota and Dakota people)\n> of the Great Plains of North America. The heyoka is a contrarian, jester,\n> and satirist, who speaks, moves and reacts in an opposite fashion to the\n> people around them.\n\nheyoka.py is a Python library for the integration of ordinary differential equations\n(ODEs) via Taylor's method, based on automatic differentiation techniques and aggressive just-in-time\ncompilation via [LLVM](https://llvm.org/). Notable features include:\n\n* support for single-precision, double-precision, extended-precision (80-bit and 128-bit),\n  and arbitrary-precision floating-point types,\n* high-precision zero-cost dense output,\n* accurate and reliable event detection,\n* builtin support for analytical mechanics - bring your own Lagrangians/Hamiltonians\n  and let heyoka.py formulate and solve the equations of motion,\n* builtin support for high-order variational equations - compute not only the solution,\n  but also its partial derivatives,\n* builtin support for machine learning applications via neural network models,\n* the ability to maintain machine precision accuracy over\n  tens of billions of timesteps,\n* batch mode integration to harness the power of modern\n  [SIMD](https://en.wikipedia.org/wiki/SIMD) instruction sets\n  (including AVX/AVX2/AVX-512/Neon/VSX),\n* ensemble simulations and automatic parallelisation,\n* interoperability with [SymPy](https://www.sympy.org/en/index.html).\n\nheyoka.py is based on the [heyoka C++ library](https://github.com/bluescarni/heyoka).\n\nIf you are using heyoka.py as part of your research, teaching, or other activities, we would be grateful if you could star\nthe repository and/or cite our work. For citation purposes, you can use the following BibTex entry, which refers\nto the heyoka.py paper ([arXiv preprint](https://arxiv.org/abs/2105.00800)):\n\n```bibtex\n@article{10.1093/mnras/stab1032,\n    author = {Biscani, Francesco and Izzo, Dario},\n    title = \"{Revisiting high-order Taylor methods for astrodynamics and celestial mechanics}\",\n    journal = {Monthly Notices of the Royal Astronomical Society},\n    volume = {504},\n    number = {2},\n    pages = {2614-2628},\n    year = {2021},\n    month = {04},\n    issn = {0035-8711},\n    doi = {10.1093/mnras/stab1032},\n    url = {https://doi.org/10.1093/mnras/stab1032},\n    eprint = {https://academic.oup.com/mnras/article-pdf/504/2/2614/37750349/stab1032.pdf}\n}\n```\n\nheyoka.py's novel event detection system is described in the following paper ([arXiv preprint](https://arxiv.org/abs/2204.09948)):\n\n```bibtex\n@article{10.1093/mnras/stac1092,\n    author = {Biscani, Francesco and Izzo, Dario},\n    title = \"{Reliable event detection for Taylor methods in astrodynamics}\",\n    journal = {Monthly Notices of the Royal Astronomical Society},\n    volume = {513},\n    number = {4},\n    pages = {4833-4844},\n    year = {2022},\n    month = {04},\n    issn = {0035-8711},\n    doi = {10.1093/mnras/stac1092},\n    url = {https://doi.org/10.1093/mnras/stac1092},\n    eprint = {https://academic.oup.com/mnras/article-pdf/513/4/4833/43796551/stac1092.pdf}\n}\n```\n\nInstallation\n------------\n\nVia pip:\n\n```console\n$ pip install heyoka\n```\n\nVia conda + [conda-forge](https://conda-forge.org/):\n\n```console\n$ conda install heyoka.py\n```\n\nDocumentation\n-------------\n\nThe full documentation can be found [here](https://bluescarni.github.io/heyoka.py/).\n\nAuthors\n-------\n\n* Francesco Biscani (European Space Agency)\n* Dario Izzo (European Space Agency)\n\nLicense\n-------\n\nheyoka.py is released under the [MPL-2.0](https://www.mozilla.org/en-US/MPL/2.0/FAQ/)\nlicense.\n",
    "bugtrack_url": null,
    "license": "MPL-2.0",
    "summary": "Python library for ODE integration via Taylor's method and LLVM",
    "version": "6.1.1",
    "project_urls": {
        "Documentation": "https://bluescarni.github.io/heyoka.py/index.html",
        "Repository": "https://github.com/bluescarni/heyoka.py"
    },
    "split_keywords": [
        "science",
        " math",
        " physics",
        " ode"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "38dfcd9b350d58c7b08a9428dba5c18e129fa4dbdc36b58d8cdd259382001259",
                "md5": "8df991d1acc5373d38b74a7c04f56e88",
                "sha256": "9bfd5f10a275a4facff8f1eaafbaf36a48094f41f3ee6aa417d9c5ab0703a5e2"
            },
            "downloads": -1,
            "filename": "heyoka-6.1.1-cp310-cp310-manylinux_2_28_x86_64.whl",
            "has_sig": false,
            "md5_digest": "8df991d1acc5373d38b74a7c04f56e88",
            "packagetype": "bdist_wheel",
            "python_version": "cp310",
            "requires_python": ">=3.5",
            "size": 101324769,
            "upload_time": "2024-10-10T13:37:30",
            "upload_time_iso_8601": "2024-10-10T13:37:30.938318Z",
            "url": "https://files.pythonhosted.org/packages/38/df/cd9b350d58c7b08a9428dba5c18e129fa4dbdc36b58d8cdd259382001259/heyoka-6.1.1-cp310-cp310-manylinux_2_28_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "ed848e6cedcb05808a06430f27d84c9eb76cb22492d5ede2ce99f4bac05961f8",
                "md5": "7b13fb69ca77a99a5cb030b2ff8c8689",
                "sha256": "59949cdf86caec146dee81eaa6516c53c314e392337ea9c9f85e32c5e85fad5e"
            },
            "downloads": -1,
            "filename": "heyoka-6.1.1-cp311-cp311-manylinux_2_28_x86_64.whl",
            "has_sig": false,
            "md5_digest": "7b13fb69ca77a99a5cb030b2ff8c8689",
            "packagetype": "bdist_wheel",
            "python_version": "cp311",
            "requires_python": ">=3.5",
            "size": 101325933,
            "upload_time": "2024-10-10T13:37:46",
            "upload_time_iso_8601": "2024-10-10T13:37:46.822772Z",
            "url": "https://files.pythonhosted.org/packages/ed/84/8e6cedcb05808a06430f27d84c9eb76cb22492d5ede2ce99f4bac05961f8/heyoka-6.1.1-cp311-cp311-manylinux_2_28_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "a2c7982c907a0891e4e8735fb246ff4bc59ff82c77090a3cc37cbf1120e81027",
                "md5": "1bb9e060609b442cc2762a1b1b40038b",
                "sha256": "654b700514925ae5ea52ba59b16bfa12cbf39e8cfcd7997bb1dcf4d966be45a4"
            },
            "downloads": -1,
            "filename": "heyoka-6.1.1-cp312-cp312-manylinux_2_28_x86_64.whl",
            "has_sig": false,
            "md5_digest": "1bb9e060609b442cc2762a1b1b40038b",
            "packagetype": "bdist_wheel",
            "python_version": "cp312",
            "requires_python": ">=3.5",
            "size": 101328323,
            "upload_time": "2024-10-10T13:37:47",
            "upload_time_iso_8601": "2024-10-10T13:37:47.465910Z",
            "url": "https://files.pythonhosted.org/packages/a2/c7/982c907a0891e4e8735fb246ff4bc59ff82c77090a3cc37cbf1120e81027/heyoka-6.1.1-cp312-cp312-manylinux_2_28_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "9a1e32cdb6453521ec450c0ef104c98a3505f9b60fcd17b78865ecacf05776b3",
                "md5": "0d85fbebf77dfc505ac2d15d44bbb2f8",
                "sha256": "d41b56e19e5738f6aa0872cf2de3fc31c8e6b9aa7844fc79306c231cde0465e7"
            },
            "downloads": -1,
            "filename": "heyoka-6.1.1-cp313-cp313-manylinux_2_28_x86_64.whl",
            "has_sig": false,
            "md5_digest": "0d85fbebf77dfc505ac2d15d44bbb2f8",
            "packagetype": "bdist_wheel",
            "python_version": "cp313",
            "requires_python": ">=3.5",
            "size": 101329098,
            "upload_time": "2024-10-10T13:46:03",
            "upload_time_iso_8601": "2024-10-10T13:46:03.970559Z",
            "url": "https://files.pythonhosted.org/packages/9a/1e/32cdb6453521ec450c0ef104c98a3505f9b60fcd17b78865ecacf05776b3/heyoka-6.1.1-cp313-cp313-manylinux_2_28_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "d6100ed2c0e7e5f30fd97dd225f6d17a30ed316d0d781f1e39475770b05af073",
                "md5": "259fd56307b5a3b4e9715d60fdac0f39",
                "sha256": "43414b9b6a83ca37780fa9b7440986a75d02c9f4750395c8dd5b66f7b801b3f4"
            },
            "downloads": -1,
            "filename": "heyoka-6.1.1-cp38-cp38-manylinux_2_28_x86_64.whl",
            "has_sig": false,
            "md5_digest": "259fd56307b5a3b4e9715d60fdac0f39",
            "packagetype": "bdist_wheel",
            "python_version": "cp38",
            "requires_python": ">=3.5",
            "size": 101324087,
            "upload_time": "2024-10-10T13:46:59",
            "upload_time_iso_8601": "2024-10-10T13:46:59.349439Z",
            "url": "https://files.pythonhosted.org/packages/d6/10/0ed2c0e7e5f30fd97dd225f6d17a30ed316d0d781f1e39475770b05af073/heyoka-6.1.1-cp38-cp38-manylinux_2_28_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "df13487f6227629d5b0a6262ad53496656f850c9c52799fece6334c55d623adb",
                "md5": "1295f2da50c07d7e04a1ffeb732f19ae",
                "sha256": "8ad598aa047ad1c3b07f6d056933bcddf5fac2e163c357796c13552eb2703237"
            },
            "downloads": -1,
            "filename": "heyoka-6.1.1-cp39-cp39-manylinux_2_28_x86_64.whl",
            "has_sig": false,
            "md5_digest": "1295f2da50c07d7e04a1ffeb732f19ae",
            "packagetype": "bdist_wheel",
            "python_version": "cp39",
            "requires_python": ">=3.5",
            "size": 101325452,
            "upload_time": "2024-10-10T13:46:43",
            "upload_time_iso_8601": "2024-10-10T13:46:43.220909Z",
            "url": "https://files.pythonhosted.org/packages/df/13/487f6227629d5b0a6262ad53496656f850c9c52799fece6334c55d623adb/heyoka-6.1.1-cp39-cp39-manylinux_2_28_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-10-10 13:37:30",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "bluescarni",
    "github_project": "heyoka.py",
    "travis_ci": true,
    "coveralls": false,
    "github_actions": true,
    "circle": true,
    "lcname": "heyoka"
}
        
Elapsed time: 0.36775s