Name | heyoka JSON |
Version |
7.2.1
JSON |
| download |
home_page | None |
Summary | Python library for ODE integration via Taylor's method and LLVM |
upload_time | 2025-01-07 21:48:33 |
maintainer | None |
docs_url | None |
author | None |
requires_python | >=3.9 |
license | MPL-2.0 |
keywords |
science
math
physics
ode
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
|
coveralls test coverage |
No coveralls.
|
heyoka.py
=========
[![Build Status](https://img.shields.io/circleci/project/github/bluescarni/heyoka.py/main.svg?style=for-the-badge)](https://circleci.com/gh/bluescarni/heyoka.py)
[![Build Status](https://img.shields.io/github/actions/workflow/status/bluescarni/heyoka.py/gh_actions_ci.yml?branch=main&style=for-the-badge)](https://github.com/bluescarni/heyoka.py/actions?query=workflow%3A%22GitHub+CI%22)
[![Anaconda-Server Badge](https://img.shields.io/conda/vn/conda-forge/heyoka.py.svg?style=for-the-badge)](https://anaconda.org/conda-forge/heyoka.py)
[![PyPI](https://img.shields.io/pypi/v/heyoka.svg?style=for-the-badge)](https://pypi.python.org/pypi/heyoka)
<!-- PROJECT LOGO -->
<br />
<p align="center">
<a href="https://github.com/bluescarni/heyoka.py">
<img src="doc/images/white_logo.png" alt="Logo" width="280">
</a>
<p align="center">
Modern Taylor's method via just-in-time compilation
<br />
<a href="https://bluescarni.github.io/heyoka.py/index.html"><strong>Explore the docs »</strong></a>
<br />
<br />
<a href="https://github.com/bluescarni/heyoka.py/issues/new/choose">Report bug</a>
·
<a href="https://github.com/bluescarni/heyoka.py/issues/new/choose">Request feature</a>
·
<a href="https://github.com/bluescarni/heyoka.py/discussions">Discuss</a>
</p>
</p>
> The [heyókȟa](https://en.wikipedia.org/wiki/Heyoka>) [...] is a kind of
> sacred clown in the culture of the Sioux (Lakota and Dakota people)
> of the Great Plains of North America. The heyoka is a contrarian, jester,
> and satirist, who speaks, moves and reacts in an opposite fashion to the
> people around them.
heyoka.py is a Python library for the integration of ordinary differential equations
(ODEs) via Taylor's method, based on automatic differentiation techniques and aggressive just-in-time
compilation via [LLVM](https://llvm.org/). Notable features include:
* support for single-precision, double-precision, extended-precision (80-bit and 128-bit),
and arbitrary-precision floating-point types,
* high-precision zero-cost dense output,
* accurate and reliable event detection,
* builtin support for analytical mechanics - bring your own Lagrangians/Hamiltonians
and let heyoka.py formulate and solve the equations of motion,
* builtin support for high-order variational equations - compute not only the solution,
but also its partial derivatives,
* builtin support for machine learning applications via neural network models,
* the ability to maintain machine precision accuracy over
tens of billions of timesteps,
* batch mode integration to harness the power of modern
[SIMD](https://en.wikipedia.org/wiki/SIMD) instruction sets
(including AVX/AVX2/AVX-512/Neon/VSX),
* ensemble simulations and automatic parallelisation,
* interoperability with [SymPy](https://www.sympy.org/en/index.html).
heyoka.py is based on the [heyoka C++ library](https://github.com/bluescarni/heyoka).
If you are using heyoka.py as part of your research, teaching, or other activities, we would be grateful if you could star
the repository and/or cite our work. For citation purposes, you can use the following BibTex entry, which refers
to the heyoka.py paper ([arXiv preprint](https://arxiv.org/abs/2105.00800)):
```bibtex
@article{10.1093/mnras/stab1032,
author = {Biscani, Francesco and Izzo, Dario},
title = "{Revisiting high-order Taylor methods for astrodynamics and celestial mechanics}",
journal = {Monthly Notices of the Royal Astronomical Society},
volume = {504},
number = {2},
pages = {2614-2628},
year = {2021},
month = {04},
issn = {0035-8711},
doi = {10.1093/mnras/stab1032},
url = {https://doi.org/10.1093/mnras/stab1032},
eprint = {https://academic.oup.com/mnras/article-pdf/504/2/2614/37750349/stab1032.pdf}
}
```
heyoka.py's novel event detection system is described in the following paper ([arXiv preprint](https://arxiv.org/abs/2204.09948)):
```bibtex
@article{10.1093/mnras/stac1092,
author = {Biscani, Francesco and Izzo, Dario},
title = "{Reliable event detection for Taylor methods in astrodynamics}",
journal = {Monthly Notices of the Royal Astronomical Society},
volume = {513},
number = {4},
pages = {4833-4844},
year = {2022},
month = {04},
issn = {0035-8711},
doi = {10.1093/mnras/stac1092},
url = {https://doi.org/10.1093/mnras/stac1092},
eprint = {https://academic.oup.com/mnras/article-pdf/513/4/4833/43796551/stac1092.pdf}
}
```
Installation
------------
Via pip:
```console
$ pip install heyoka
```
Via conda + [conda-forge](https://conda-forge.org/):
```console
$ conda install heyoka.py
```
Documentation
-------------
The full documentation can be found [here](https://bluescarni.github.io/heyoka.py/).
Authors
-------
* Francesco Biscani (European Space Agency)
* Dario Izzo (European Space Agency)
License
-------
heyoka.py is released under the [MPL-2.0](https://www.mozilla.org/en-US/MPL/2.0/FAQ/)
license.
Raw data
{
"_id": null,
"home_page": null,
"name": "heyoka",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.9",
"maintainer_email": null,
"keywords": "science, math, physics, ode",
"author": null,
"author_email": "Francesco Biscani <bluescarni@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/68/5b/8f321c575e091e363427843aaa2fd04e287a8d1f45a6fa681ac00f870775/heyoka-7.2.1.tar.gz",
"platform": null,
"description": "heyoka.py\n=========\n\n[![Build Status](https://img.shields.io/circleci/project/github/bluescarni/heyoka.py/main.svg?style=for-the-badge)](https://circleci.com/gh/bluescarni/heyoka.py)\n[![Build Status](https://img.shields.io/github/actions/workflow/status/bluescarni/heyoka.py/gh_actions_ci.yml?branch=main&style=for-the-badge)](https://github.com/bluescarni/heyoka.py/actions?query=workflow%3A%22GitHub+CI%22)\n\n[![Anaconda-Server Badge](https://img.shields.io/conda/vn/conda-forge/heyoka.py.svg?style=for-the-badge)](https://anaconda.org/conda-forge/heyoka.py)\n[![PyPI](https://img.shields.io/pypi/v/heyoka.svg?style=for-the-badge)](https://pypi.python.org/pypi/heyoka)\n\n<!-- PROJECT LOGO -->\n<br />\n<p align=\"center\">\n <a href=\"https://github.com/bluescarni/heyoka.py\">\n <img src=\"doc/images/white_logo.png\" alt=\"Logo\" width=\"280\">\n </a>\n <p align=\"center\">\n Modern Taylor's method via just-in-time compilation\n <br />\n <a href=\"https://bluescarni.github.io/heyoka.py/index.html\"><strong>Explore the docs \u00bb</strong></a>\n <br />\n <br />\n <a href=\"https://github.com/bluescarni/heyoka.py/issues/new/choose\">Report bug</a>\n \u00b7\n <a href=\"https://github.com/bluescarni/heyoka.py/issues/new/choose\">Request feature</a>\n \u00b7\n <a href=\"https://github.com/bluescarni/heyoka.py/discussions\">Discuss</a>\n </p>\n</p>\n\n> The [hey\u00f3k\u021fa](https://en.wikipedia.org/wiki/Heyoka>) [...] is a kind of\n> sacred clown in the culture of the Sioux (Lakota and Dakota people)\n> of the Great Plains of North America. The heyoka is a contrarian, jester,\n> and satirist, who speaks, moves and reacts in an opposite fashion to the\n> people around them.\n\nheyoka.py is a Python library for the integration of ordinary differential equations\n(ODEs) via Taylor's method, based on automatic differentiation techniques and aggressive just-in-time\ncompilation via [LLVM](https://llvm.org/). Notable features include:\n\n* support for single-precision, double-precision, extended-precision (80-bit and 128-bit),\n and arbitrary-precision floating-point types,\n* high-precision zero-cost dense output,\n* accurate and reliable event detection,\n* builtin support for analytical mechanics - bring your own Lagrangians/Hamiltonians\n and let heyoka.py formulate and solve the equations of motion,\n* builtin support for high-order variational equations - compute not only the solution,\n but also its partial derivatives,\n* builtin support for machine learning applications via neural network models,\n* the ability to maintain machine precision accuracy over\n tens of billions of timesteps,\n* batch mode integration to harness the power of modern\n [SIMD](https://en.wikipedia.org/wiki/SIMD) instruction sets\n (including AVX/AVX2/AVX-512/Neon/VSX),\n* ensemble simulations and automatic parallelisation,\n* interoperability with [SymPy](https://www.sympy.org/en/index.html).\n\nheyoka.py is based on the [heyoka C++ library](https://github.com/bluescarni/heyoka).\n\nIf you are using heyoka.py as part of your research, teaching, or other activities, we would be grateful if you could star\nthe repository and/or cite our work. For citation purposes, you can use the following BibTex entry, which refers\nto the heyoka.py paper ([arXiv preprint](https://arxiv.org/abs/2105.00800)):\n\n```bibtex\n@article{10.1093/mnras/stab1032,\n author = {Biscani, Francesco and Izzo, Dario},\n title = \"{Revisiting high-order Taylor methods for astrodynamics and celestial mechanics}\",\n journal = {Monthly Notices of the Royal Astronomical Society},\n volume = {504},\n number = {2},\n pages = {2614-2628},\n year = {2021},\n month = {04},\n issn = {0035-8711},\n doi = {10.1093/mnras/stab1032},\n url = {https://doi.org/10.1093/mnras/stab1032},\n eprint = {https://academic.oup.com/mnras/article-pdf/504/2/2614/37750349/stab1032.pdf}\n}\n```\n\nheyoka.py's novel event detection system is described in the following paper ([arXiv preprint](https://arxiv.org/abs/2204.09948)):\n\n```bibtex\n@article{10.1093/mnras/stac1092,\n author = {Biscani, Francesco and Izzo, Dario},\n title = \"{Reliable event detection for Taylor methods in astrodynamics}\",\n journal = {Monthly Notices of the Royal Astronomical Society},\n volume = {513},\n number = {4},\n pages = {4833-4844},\n year = {2022},\n month = {04},\n issn = {0035-8711},\n doi = {10.1093/mnras/stac1092},\n url = {https://doi.org/10.1093/mnras/stac1092},\n eprint = {https://academic.oup.com/mnras/article-pdf/513/4/4833/43796551/stac1092.pdf}\n}\n```\n\nInstallation\n------------\n\nVia pip:\n\n```console\n$ pip install heyoka\n```\n\nVia conda + [conda-forge](https://conda-forge.org/):\n\n```console\n$ conda install heyoka.py\n```\n\nDocumentation\n-------------\n\nThe full documentation can be found [here](https://bluescarni.github.io/heyoka.py/).\n\nAuthors\n-------\n\n* Francesco Biscani (European Space Agency)\n* Dario Izzo (European Space Agency)\n\nLicense\n-------\n\nheyoka.py is released under the [MPL-2.0](https://www.mozilla.org/en-US/MPL/2.0/FAQ/)\nlicense.\n",
"bugtrack_url": null,
"license": "MPL-2.0",
"summary": "Python library for ODE integration via Taylor's method and LLVM",
"version": "7.2.1",
"project_urls": {
"Documentation": "https://bluescarni.github.io/heyoka.py/index.html",
"Repository": "https://github.com/bluescarni/heyoka.py"
},
"split_keywords": [
"science",
" math",
" physics",
" ode"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "46f9f545e7d75ff8ccbb32ae679259f6125d9336f2908a04e0781947707330e1",
"md5": "4c5ada40085c969b29573465dec0086e",
"sha256": "ec9c790cf3753d36b19b7e7e55ebcce6275012d91b1381473132e4e3fb56f550"
},
"downloads": -1,
"filename": "heyoka-7.2.1-cp310-cp310-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "4c5ada40085c969b29573465dec0086e",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.9",
"size": 101555023,
"upload_time": "2025-01-07T21:56:28",
"upload_time_iso_8601": "2025-01-07T21:56:28.253707Z",
"url": "https://files.pythonhosted.org/packages/46/f9/f545e7d75ff8ccbb32ae679259f6125d9336f2908a04e0781947707330e1/heyoka-7.2.1-cp310-cp310-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "2838c6c5ec4acc6dc61333c0561334abed04486fcf62d6bb704e3ba3317e0616",
"md5": "e8e4c45b30f3e04e0e6ca3bc4f041185",
"sha256": "ac6fc436a13d40af0b8513522fa92426187008a7b5ff88231cac4f22f448c363"
},
"downloads": -1,
"filename": "heyoka-7.2.1-cp311-cp311-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "e8e4c45b30f3e04e0e6ca3bc4f041185",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.9",
"size": 101555965,
"upload_time": "2025-01-07T21:57:55",
"upload_time_iso_8601": "2025-01-07T21:57:55.476611Z",
"url": "https://files.pythonhosted.org/packages/28/38/c6c5ec4acc6dc61333c0561334abed04486fcf62d6bb704e3ba3317e0616/heyoka-7.2.1-cp311-cp311-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "8fc822ddc41be0620675c49090d7d08ea10ca9d2653f87fbf1a462e5b937fecb",
"md5": "9c1610ae04de120fdf44e1d2c47844fc",
"sha256": "98fc56365aa7382fa93b5232bd579ab60692c4734d977b54227b828f0847bc51"
},
"downloads": -1,
"filename": "heyoka-7.2.1-cp312-cp312-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "9c1610ae04de120fdf44e1d2c47844fc",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.9",
"size": 101561009,
"upload_time": "2025-01-07T21:57:58",
"upload_time_iso_8601": "2025-01-07T21:57:58.060529Z",
"url": "https://files.pythonhosted.org/packages/8f/c8/22ddc41be0620675c49090d7d08ea10ca9d2653f87fbf1a462e5b937fecb/heyoka-7.2.1-cp312-cp312-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "5f453622b657cb666e7cc8e7e02e24cfb7053ca935b51fb9fa97ba8b21edca2b",
"md5": "9927fecd41a529d25f186881dabebcec",
"sha256": "18c6e8dc187548a1b57202c984a851b5e9458a047358ffe94b27246b2168f891"
},
"downloads": -1,
"filename": "heyoka-7.2.1-cp313-cp313-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "9927fecd41a529d25f186881dabebcec",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": ">=3.9",
"size": 101561511,
"upload_time": "2025-01-07T21:48:12",
"upload_time_iso_8601": "2025-01-07T21:48:12.893228Z",
"url": "https://files.pythonhosted.org/packages/5f/45/3622b657cb666e7cc8e7e02e24cfb7053ca935b51fb9fa97ba8b21edca2b/heyoka-7.2.1-cp313-cp313-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "1b41ab1687139e37f7a202d744c83b8fee2391809544c0c841f4a53770ba5a5b",
"md5": "65f26c5140c2d6e6b9040b903aa9061f",
"sha256": "ed25be9426f5cf405ac86ac70511c106f0b289c00dad71f6512a7de567110ba6"
},
"downloads": -1,
"filename": "heyoka-7.2.1-cp39-cp39-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "65f26c5140c2d6e6b9040b903aa9061f",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.9",
"size": 101555006,
"upload_time": "2025-01-07T21:57:37",
"upload_time_iso_8601": "2025-01-07T21:57:37.776445Z",
"url": "https://files.pythonhosted.org/packages/1b/41/ab1687139e37f7a202d744c83b8fee2391809544c0c841f4a53770ba5a5b/heyoka-7.2.1-cp39-cp39-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "685b8f321c575e091e363427843aaa2fd04e287a8d1f45a6fa681ac00f870775",
"md5": "b846d9b9d2ed87df9b64b4efa0274b19",
"sha256": "65a1b0679219b7aff36a3141b7ecb113a769035e646e0f6ef6bcc85442910c99"
},
"downloads": -1,
"filename": "heyoka-7.2.1.tar.gz",
"has_sig": false,
"md5_digest": "b846d9b9d2ed87df9b64b4efa0274b19",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.9",
"size": 1659929,
"upload_time": "2025-01-07T21:48:33",
"upload_time_iso_8601": "2025-01-07T21:48:33.024792Z",
"url": "https://files.pythonhosted.org/packages/68/5b/8f321c575e091e363427843aaa2fd04e287a8d1f45a6fa681ac00f870775/heyoka-7.2.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-01-07 21:48:33",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "bluescarni",
"github_project": "heyoka.py",
"travis_ci": true,
"coveralls": false,
"github_actions": true,
"circle": true,
"lcname": "heyoka"
}