hibiz-llm-wrapper


Namehibiz-llm-wrapper JSON
Version 1.0.2 PyPI version JSON
download
home_pageNone
SummaryA comprehensive Python wrapper for Large Language Models with database integration and usage tracking
upload_time2025-07-25 05:21:20
maintainerNone
docs_urlNone
authorNone
requires_python>=3.8
licenseNone
keywords llm language-model openai azure gpt ai machine-learning database postgresql mysql mongodb usage-tracking api-wrapper
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # LLM Wrapper

A comprehensive Python wrapper for Azure OpenAI with built-in PostgreSQL integration and usage tracking. Provides detailed analytics for LLM usage with support for both text and JSON response formats, including multimodal capabilities (text + images).

## Features

- 🚀 **Easy Integration**: Simple API for interacting with Azure OpenAI services
- 📊 **Usage Tracking**: Comprehensive logging and analytics for all LLM requests
- 💾 **PostgreSQL Integration**: Built-in PostgreSQL database support with automatic table creation
- ⚡ **High Performance**: Optimized for concurrent requests and high throughput
- 🔒 **Secure**: Built-in security features and API key management
- 📈 **Analytics**: Detailed usage statistics and reporting
- 🎯 **Response Types**: Support for both text and JSON response formats
- 🖼️ **Multimodal Support**: Handle text, images, and mixed content in conversations
- 🗨️ **Conversation Support**: Multi-turn conversation capabilities with role-based messaging
- 🐳 **Production Ready**: Robust error handling and logging

## Installation

### Basic Installation

```bash
pip install hibiz-llm-wrapper
```

## Quick Start

### Basic Usage

```python
from hibiz_llm_wrapper import LLMWrapper

# Initialize the wrapper (database connection is automatic)
wrapper = LLMWrapper(
    service_url="https://your-azure-openai-instance.openai.azure.com",
    api_key="your-azure-openai-api-key",
    deployment_name="your-deployment-name",
    api_version="2023-05-15",
    default_model='gpt-4'
)

# Send a text request using prompt_payload
prompt_payload = [
    {"role": "user", "content": "What are the benefits of renewable energy?"}
]

response = wrapper.send_request(
    prompt_payload=prompt_payload,
    customer_id=1,
    organization_id=1,
    response_type="text",
    temperature=0.7,
    max_tokens=2000
)

print(f"Response: {response['processed_output']}")
print(f"Tokens used: {response['total_tokens']}")
print(f"Response type: {response['response_type']}")

# Send a JSON request
json_prompt = [
    {"role": "user", "content": "Create a JSON object with information about Python programming including name, creator, and year_created."}
]

json_response = wrapper.send_request(
    prompt_payload=json_prompt,
    customer_id=1,
    organization_id=1,
    response_type="json"
)

print(f"JSON Response: {json_response['processed_output']}")
print(f"Creator: {json_response['processed_output'].get('creator', 'N/A')}")

# Get usage statistics
stats = wrapper.get_usage_stats()
print(f"Total requests: {stats['total_requests']}")
print(f"Total tokens: {stats['total_tokens']}")

# Clean up
wrapper.close()
```

### Multimodal Usage (Text + Images)

```python
# Send request with image
multimodal_prompt = [
    {
        "role": "user", 
        "content": [
            {"type": "text", "text": "What do you see in this image? Describe it in detail."},
            {"type": "image_url", "image_url": {"url": "..."}}
        ]
    }
]

response = wrapper.send_request(
    prompt_payload=multimodal_prompt,
    customer_id=1,
    organization_id=1,
    response_type="text"
)

print(f"Image Analysis: {response['processed_output']}")

# Multiple images with text
multi_image_prompt = [
    {
        "role": "user", 
        "content": [
            {"type": "text", "text": "Compare these two images and tell me the differences:"},
            {"type": "image_url", "image_url": {"url": "https://example.com/image1.jpg"}},
            {"type": "image_url", "image_url": {"url": "https://example.com/image2.jpg"}},
            {"type": "text", "text": "Please provide the comparison in JSON format."}
        ]
    }
]

comparison = wrapper.send_request(
    prompt_payload=multi_image_prompt,
    customer_id=1,
    organization_id=1,
    response_type="json"
)
```

### Multi-turn Conversations

```python
# Conversation with context
conversation_prompt = [
    {"role": "user", "content": "Hello, I need help with Python programming."},
    {"role": "assistant", "content": "Hello! I'd be happy to help you with Python programming. What specific topic or problem would you like assistance with?"},
    {"role": "user", "content": "Can you explain list comprehensions with examples?"},
    {"role": "assistant", "content": "Certainly! List comprehensions are a concise way to create lists in Python..."},
    {"role": "user", "content": "Now show me how to use list comprehensions with images in the context."},
    {
        "role": "user", 
        "content": [
            {"type": "text", "text": "Here's a code screenshot I'm working with:"},
            {"type": "image_url", "image_url": {"url": "..."}}
        ]
    }
]

response = wrapper.send_request(
    prompt_payload=conversation_prompt,
    customer_id=1,
    organization_id=1,
    response_type="text"
)
```

## Response Types

### Text Response (Default)

```python
prompt_payload = [{"role": "user", "content": "Explain artificial intelligence"}]

response = wrapper.send_request(
    prompt_payload=prompt_payload,
    customer_id=1,
    organization_id=1,
    response_type="text"
)

# Response structure:
{
    "output_text": "raw response from API",
    "processed_output": "same as output_text for text responses",
    "response_type": "text",
    "input_tokens": 10,
    "output_tokens": 150,
    "total_tokens": 160,
    "response_time_ms": 1200,
    "model": "gpt-4",
    "full_response": {...},
    "original_prompt": [{"role": "user", "content": "Explain artificial intelligence"}]
}
```

### JSON Response

```python
prompt_payload = [{"role": "user", "content": "Create a JSON object with user information including name, age, and skills array"}]

response = wrapper.send_request(
    prompt_payload=prompt_payload,
    customer_id=1,
    organization_id=1,
    response_type="json"
)

# Response structure:
{
    "output_text": '{"name": "John", "age": 30, "skills": ["Python", "AI"]}',
    "processed_output": {"name": "John", "age": 30, "skills": ["Python", "AI"]},
    "response_type": "json",
    "input_tokens": 15,
    "output_tokens": 25,
    "total_tokens": 40,
    "response_time_ms": 1500,
    "model": "gpt-4",
    "full_response": {...},
    "original_prompt": [{"role": "user", "content": "Create a JSON object..."}]
}
```

## Prompt Payload Formats

### Simple Text Message

```python
prompt_payload = [
    {"role": "user", "content": "Your question here"}
]
```

### System Message with User Input

```python
prompt_payload = [
    {"role": "system", "content": "You are a helpful assistant specialized in data analysis."},
    {"role": "user", "content": "Analyze this sales data for trends."}
]
```

### Multimodal Content (Text + Image)

```python
prompt_payload = [
    {
        "role": "user", 
        "content": [
            {"type": "text", "text": "What's in this image?"},
            {"type": "image_url", "image_url": {"url": "data:image/jpeg;base64,..."}}
        ]
    }
]
```

### Multi-turn Conversation

```python
prompt_payload = [
    {"role": "user", "content": "What is machine learning?"},
    {"role": "assistant", "content": "Machine learning is a subset of artificial intelligence..."},
    {"role": "user", "content": "Can you give me a practical example?"}
]
```

### Complex Multimodal Conversation

```python
prompt_payload = [
    {"role": "system", "content": "You are an expert image analyst and coder."},
    {
        "role": "user", 
        "content": [
            {"type": "text", "text": "I have two images showing different UI designs. Please analyze them and suggest improvements:"},
            {"type": "image_url", "image_url": {"url": "https://example.com/ui1.png"}},
            {"type": "image_url", "image_url": {"url": "https://example.com/ui2.png"}},
            {"type": "text", "text": "Focus on usability and accessibility aspects."}
        ]
    },
    {"role": "assistant", "content": "I can see both UI designs. Here are my observations..."},
    {
        "role": "user", 
        "content": [
            {"type": "text", "text": "Great analysis! Now here's the updated design based on your feedback:"},
            {"type": "image_url", "image_url": {"url": "https://example.com/ui3.png"}},
            {"type": "text", "text": "What do you think of the improvements?"}
        ]
    }
]
```

## Database Schema

The wrapper automatically creates the following PostgreSQL table:

```sql
CREATE TABLE token_usage_log (
    id SERIAL PRIMARY KEY,
    customer_id INTEGER NOT NULL,
    organization_id INTEGER NOT NULL,
    model_name VARCHAR(255) NOT NULL,
    request_params JSON,
    response_params JSON,
    input_tokens INTEGER NOT NULL,
    output_tokens INTEGER NOT NULL,
    total_tokens INTEGER NOT NULL,
    request_timestamp TIMESTAMP DEFAULT NOW(),
    response_time_ms INTEGER NOT NULL,
    status VARCHAR(50) DEFAULT 'success'
);
```

## Usage Analytics

```python
# Get overall statistics
stats = wrapper.get_usage_stats()

# Get customer-specific statistics
customer_stats = wrapper.get_usage_stats(customer_id=1)

# Get organization-specific statistics
org_stats = wrapper.get_usage_stats(organization_id=1)

# Get statistics for a specific time period
period_stats = wrapper.get_usage_stats(
    start_date="2024-01-01T00:00:00",
    end_date="2024-01-31T23:59:59"
)

# Example stats output:
{
    "total_requests": 150,
    "total_tokens": 45000,
    "models": [
        {
            "model_name": "gpt-4",
            "requests": 100,
            "input_tokens": 15000,
            "output_tokens": 20000,
            "total_tokens": 35000,
            "avg_response_time_ms": 1200
        },
        {
            "model_name": "gpt-3.5-turbo",
            "requests": 50,
            "input_tokens": 5000,
            "output_tokens": 5000,
            "total_tokens": 10000,
            "avg_response_time_ms": 800
        }
    ]
}
```

## Configuration Options

| Parameter | Type | Default | Description |
|-----------|------|---------|-------------|
| `service_url` | str | Required | Azure OpenAI service endpoint URL |
| `api_key` | str | Required | Azure OpenAI API key |
| `deployment_name` | str | Required | Azure OpenAI deployment name |
| `api_version` | str | Required | Azure OpenAI API version |
| `default_model` | str | 'gpt-4' | Default model identifier |
| `timeout` | int | 30 | Request timeout in seconds |

## API Reference

### Core Methods

#### `send_request(prompt_payload, customer_id, organization_id, response_type="text", **kwargs)`

Send a request to the Azure OpenAI service using the new prompt payload format.

**Parameters:**
- `prompt_payload` (List[Dict[str, Any]]): Array of message objects with role and content
- `customer_id` (int): Customer identifier
- `organization_id` (int): Organization identifier
- `response_type` (str): Response format - "text" or "json"
- `model` (str, optional): Model to use for this request
- `temperature` (float, optional): Sampling temperature (0.0-1.0)
- `max_tokens` (int, optional): Maximum tokens in response

**Message Format:**
```python
# Text message
{"role": "user|assistant|system", "content": "text content"}

# Multimodal message
{
    "role": "user|assistant|system", 
    "content": [
        {"type": "text", "text": "text content"},
        {"type": "image_url", "image_url": {"url": "image_url_or_base64"}}
    ]
}
```

**Returns:**
- `dict`: Response containing output text, processed output, token counts, metadata, and original prompt

#### `get_usage_stats(**filters)`

Get usage statistics with optional filtering.

**Parameters:**
- `customer_id` (int, optional): Filter by customer
- `organization_id` (int, optional): Filter by organization
- `start_date` (str, optional): Start date in ISO format
- `end_date` (str, optional): End date in ISO format

**Returns:**
- `dict`: Usage statistics including request counts, token usage, and performance metrics

#### `close()`

Close database connections and clean up resources.

## Token Calculation

The wrapper intelligently handles token calculation for different content types:

- **Text content**: Direct token counting using the specified model's tokenizer
- **Image content**: Uses placeholder tokens for estimation (actual tokens may vary based on image size and complexity)
- **Mixed content**: Combines text and image token estimates

## Error Handling

The wrapper provides comprehensive error handling:

```python
from hibiz_llm_wrapper.exceptions import APIError, DatabaseError

try:
    response = wrapper.send_request(
        prompt_payload=[{"role": "user", "content": "Hello"}],
        customer_id=1,
        organization_id=1
    )
except APIError as e:
    print(f"API request failed: {e}")
except DatabaseError as e:
    print(f"Database operation failed: {e}")
```

## Requirements

- Python 3.8+
- Pillow (for image processing)
- tiktoken (for token counting)

## License

This project is licensed under the MIT License.

## Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

## Acknowledgments

- Thanks to all contributors who have helped shape this project
- Built with love for the AI/ML community

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "hibiz-llm-wrapper",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": "Akilan R M <akilan@hibizsolutions.com>",
    "keywords": "llm, language-model, openai, azure, gpt, ai, machine-learning, database, postgresql, mysql, mongodb, usage-tracking, api-wrapper",
    "author": null,
    "author_email": "Akilan R M <akilan@hibizsolutions.com>",
    "download_url": "https://files.pythonhosted.org/packages/1c/ab/d85c8ac5d88e43614f195d9595f6ee314c1b02fc24d159e08c1a029d475f/hibiz_llm_wrapper-1.0.2.tar.gz",
    "platform": null,
    "description": "# LLM Wrapper\r\n\r\nA comprehensive Python wrapper for Azure OpenAI with built-in PostgreSQL integration and usage tracking. Provides detailed analytics for LLM usage with support for both text and JSON response formats, including multimodal capabilities (text + images).\r\n\r\n## Features\r\n\r\n- \ud83d\ude80 **Easy Integration**: Simple API for interacting with Azure OpenAI services\r\n- \ud83d\udcca **Usage Tracking**: Comprehensive logging and analytics for all LLM requests\r\n- \ud83d\udcbe **PostgreSQL Integration**: Built-in PostgreSQL database support with automatic table creation\r\n- \u26a1 **High Performance**: Optimized for concurrent requests and high throughput\r\n- \ud83d\udd12 **Secure**: Built-in security features and API key management\r\n- \ud83d\udcc8 **Analytics**: Detailed usage statistics and reporting\r\n- \ud83c\udfaf **Response Types**: Support for both text and JSON response formats\r\n- \ud83d\uddbc\ufe0f **Multimodal Support**: Handle text, images, and mixed content in conversations\r\n- \ud83d\udde8\ufe0f **Conversation Support**: Multi-turn conversation capabilities with role-based messaging\r\n- \ud83d\udc33 **Production Ready**: Robust error handling and logging\r\n\r\n## Installation\r\n\r\n### Basic Installation\r\n\r\n```bash\r\npip install hibiz-llm-wrapper\r\n```\r\n\r\n## Quick Start\r\n\r\n### Basic Usage\r\n\r\n```python\r\nfrom hibiz_llm_wrapper import LLMWrapper\r\n\r\n# Initialize the wrapper (database connection is automatic)\r\nwrapper = LLMWrapper(\r\n    service_url=\"https://your-azure-openai-instance.openai.azure.com\",\r\n    api_key=\"your-azure-openai-api-key\",\r\n    deployment_name=\"your-deployment-name\",\r\n    api_version=\"2023-05-15\",\r\n    default_model='gpt-4'\r\n)\r\n\r\n# Send a text request using prompt_payload\r\nprompt_payload = [\r\n    {\"role\": \"user\", \"content\": \"What are the benefits of renewable energy?\"}\r\n]\r\n\r\nresponse = wrapper.send_request(\r\n    prompt_payload=prompt_payload,\r\n    customer_id=1,\r\n    organization_id=1,\r\n    response_type=\"text\",\r\n    temperature=0.7,\r\n    max_tokens=2000\r\n)\r\n\r\nprint(f\"Response: {response['processed_output']}\")\r\nprint(f\"Tokens used: {response['total_tokens']}\")\r\nprint(f\"Response type: {response['response_type']}\")\r\n\r\n# Send a JSON request\r\njson_prompt = [\r\n    {\"role\": \"user\", \"content\": \"Create a JSON object with information about Python programming including name, creator, and year_created.\"}\r\n]\r\n\r\njson_response = wrapper.send_request(\r\n    prompt_payload=json_prompt,\r\n    customer_id=1,\r\n    organization_id=1,\r\n    response_type=\"json\"\r\n)\r\n\r\nprint(f\"JSON Response: {json_response['processed_output']}\")\r\nprint(f\"Creator: {json_response['processed_output'].get('creator', 'N/A')}\")\r\n\r\n# Get usage statistics\r\nstats = wrapper.get_usage_stats()\r\nprint(f\"Total requests: {stats['total_requests']}\")\r\nprint(f\"Total tokens: {stats['total_tokens']}\")\r\n\r\n# Clean up\r\nwrapper.close()\r\n```\r\n\r\n### Multimodal Usage (Text + Images)\r\n\r\n```python\r\n# Send request with image\r\nmultimodal_prompt = [\r\n    {\r\n        \"role\": \"user\", \r\n        \"content\": [\r\n            {\"type\": \"text\", \"text\": \"What do you see in this image? Describe it in detail.\"},\r\n            {\"type\": \"image_url\", \"image_url\": {\"url\": \"...\"}}\r\n        ]\r\n    }\r\n]\r\n\r\nresponse = wrapper.send_request(\r\n    prompt_payload=multimodal_prompt,\r\n    customer_id=1,\r\n    organization_id=1,\r\n    response_type=\"text\"\r\n)\r\n\r\nprint(f\"Image Analysis: {response['processed_output']}\")\r\n\r\n# Multiple images with text\r\nmulti_image_prompt = [\r\n    {\r\n        \"role\": \"user\", \r\n        \"content\": [\r\n            {\"type\": \"text\", \"text\": \"Compare these two images and tell me the differences:\"},\r\n            {\"type\": \"image_url\", \"image_url\": {\"url\": \"https://example.com/image1.jpg\"}},\r\n            {\"type\": \"image_url\", \"image_url\": {\"url\": \"https://example.com/image2.jpg\"}},\r\n            {\"type\": \"text\", \"text\": \"Please provide the comparison in JSON format.\"}\r\n        ]\r\n    }\r\n]\r\n\r\ncomparison = wrapper.send_request(\r\n    prompt_payload=multi_image_prompt,\r\n    customer_id=1,\r\n    organization_id=1,\r\n    response_type=\"json\"\r\n)\r\n```\r\n\r\n### Multi-turn Conversations\r\n\r\n```python\r\n# Conversation with context\r\nconversation_prompt = [\r\n    {\"role\": \"user\", \"content\": \"Hello, I need help with Python programming.\"},\r\n    {\"role\": \"assistant\", \"content\": \"Hello! I'd be happy to help you with Python programming. What specific topic or problem would you like assistance with?\"},\r\n    {\"role\": \"user\", \"content\": \"Can you explain list comprehensions with examples?\"},\r\n    {\"role\": \"assistant\", \"content\": \"Certainly! List comprehensions are a concise way to create lists in Python...\"},\r\n    {\"role\": \"user\", \"content\": \"Now show me how to use list comprehensions with images in the context.\"},\r\n    {\r\n        \"role\": \"user\", \r\n        \"content\": [\r\n            {\"type\": \"text\", \"text\": \"Here's a code screenshot I'm working with:\"},\r\n            {\"type\": \"image_url\", \"image_url\": {\"url\": \"...\"}}\r\n        ]\r\n    }\r\n]\r\n\r\nresponse = wrapper.send_request(\r\n    prompt_payload=conversation_prompt,\r\n    customer_id=1,\r\n    organization_id=1,\r\n    response_type=\"text\"\r\n)\r\n```\r\n\r\n## Response Types\r\n\r\n### Text Response (Default)\r\n\r\n```python\r\nprompt_payload = [{\"role\": \"user\", \"content\": \"Explain artificial intelligence\"}]\r\n\r\nresponse = wrapper.send_request(\r\n    prompt_payload=prompt_payload,\r\n    customer_id=1,\r\n    organization_id=1,\r\n    response_type=\"text\"\r\n)\r\n\r\n# Response structure:\r\n{\r\n    \"output_text\": \"raw response from API\",\r\n    \"processed_output\": \"same as output_text for text responses\",\r\n    \"response_type\": \"text\",\r\n    \"input_tokens\": 10,\r\n    \"output_tokens\": 150,\r\n    \"total_tokens\": 160,\r\n    \"response_time_ms\": 1200,\r\n    \"model\": \"gpt-4\",\r\n    \"full_response\": {...},\r\n    \"original_prompt\": [{\"role\": \"user\", \"content\": \"Explain artificial intelligence\"}]\r\n}\r\n```\r\n\r\n### JSON Response\r\n\r\n```python\r\nprompt_payload = [{\"role\": \"user\", \"content\": \"Create a JSON object with user information including name, age, and skills array\"}]\r\n\r\nresponse = wrapper.send_request(\r\n    prompt_payload=prompt_payload,\r\n    customer_id=1,\r\n    organization_id=1,\r\n    response_type=\"json\"\r\n)\r\n\r\n# Response structure:\r\n{\r\n    \"output_text\": '{\"name\": \"John\", \"age\": 30, \"skills\": [\"Python\", \"AI\"]}',\r\n    \"processed_output\": {\"name\": \"John\", \"age\": 30, \"skills\": [\"Python\", \"AI\"]},\r\n    \"response_type\": \"json\",\r\n    \"input_tokens\": 15,\r\n    \"output_tokens\": 25,\r\n    \"total_tokens\": 40,\r\n    \"response_time_ms\": 1500,\r\n    \"model\": \"gpt-4\",\r\n    \"full_response\": {...},\r\n    \"original_prompt\": [{\"role\": \"user\", \"content\": \"Create a JSON object...\"}]\r\n}\r\n```\r\n\r\n## Prompt Payload Formats\r\n\r\n### Simple Text Message\r\n\r\n```python\r\nprompt_payload = [\r\n    {\"role\": \"user\", \"content\": \"Your question here\"}\r\n]\r\n```\r\n\r\n### System Message with User Input\r\n\r\n```python\r\nprompt_payload = [\r\n    {\"role\": \"system\", \"content\": \"You are a helpful assistant specialized in data analysis.\"},\r\n    {\"role\": \"user\", \"content\": \"Analyze this sales data for trends.\"}\r\n]\r\n```\r\n\r\n### Multimodal Content (Text + Image)\r\n\r\n```python\r\nprompt_payload = [\r\n    {\r\n        \"role\": \"user\", \r\n        \"content\": [\r\n            {\"type\": \"text\", \"text\": \"What's in this image?\"},\r\n            {\"type\": \"image_url\", \"image_url\": {\"url\": \"data:image/jpeg;base64,...\"}}\r\n        ]\r\n    }\r\n]\r\n```\r\n\r\n### Multi-turn Conversation\r\n\r\n```python\r\nprompt_payload = [\r\n    {\"role\": \"user\", \"content\": \"What is machine learning?\"},\r\n    {\"role\": \"assistant\", \"content\": \"Machine learning is a subset of artificial intelligence...\"},\r\n    {\"role\": \"user\", \"content\": \"Can you give me a practical example?\"}\r\n]\r\n```\r\n\r\n### Complex Multimodal Conversation\r\n\r\n```python\r\nprompt_payload = [\r\n    {\"role\": \"system\", \"content\": \"You are an expert image analyst and coder.\"},\r\n    {\r\n        \"role\": \"user\", \r\n        \"content\": [\r\n            {\"type\": \"text\", \"text\": \"I have two images showing different UI designs. Please analyze them and suggest improvements:\"},\r\n            {\"type\": \"image_url\", \"image_url\": {\"url\": \"https://example.com/ui1.png\"}},\r\n            {\"type\": \"image_url\", \"image_url\": {\"url\": \"https://example.com/ui2.png\"}},\r\n            {\"type\": \"text\", \"text\": \"Focus on usability and accessibility aspects.\"}\r\n        ]\r\n    },\r\n    {\"role\": \"assistant\", \"content\": \"I can see both UI designs. Here are my observations...\"},\r\n    {\r\n        \"role\": \"user\", \r\n        \"content\": [\r\n            {\"type\": \"text\", \"text\": \"Great analysis! Now here's the updated design based on your feedback:\"},\r\n            {\"type\": \"image_url\", \"image_url\": {\"url\": \"https://example.com/ui3.png\"}},\r\n            {\"type\": \"text\", \"text\": \"What do you think of the improvements?\"}\r\n        ]\r\n    }\r\n]\r\n```\r\n\r\n## Database Schema\r\n\r\nThe wrapper automatically creates the following PostgreSQL table:\r\n\r\n```sql\r\nCREATE TABLE token_usage_log (\r\n    id SERIAL PRIMARY KEY,\r\n    customer_id INTEGER NOT NULL,\r\n    organization_id INTEGER NOT NULL,\r\n    model_name VARCHAR(255) NOT NULL,\r\n    request_params JSON,\r\n    response_params JSON,\r\n    input_tokens INTEGER NOT NULL,\r\n    output_tokens INTEGER NOT NULL,\r\n    total_tokens INTEGER NOT NULL,\r\n    request_timestamp TIMESTAMP DEFAULT NOW(),\r\n    response_time_ms INTEGER NOT NULL,\r\n    status VARCHAR(50) DEFAULT 'success'\r\n);\r\n```\r\n\r\n## Usage Analytics\r\n\r\n```python\r\n# Get overall statistics\r\nstats = wrapper.get_usage_stats()\r\n\r\n# Get customer-specific statistics\r\ncustomer_stats = wrapper.get_usage_stats(customer_id=1)\r\n\r\n# Get organization-specific statistics\r\norg_stats = wrapper.get_usage_stats(organization_id=1)\r\n\r\n# Get statistics for a specific time period\r\nperiod_stats = wrapper.get_usage_stats(\r\n    start_date=\"2024-01-01T00:00:00\",\r\n    end_date=\"2024-01-31T23:59:59\"\r\n)\r\n\r\n# Example stats output:\r\n{\r\n    \"total_requests\": 150,\r\n    \"total_tokens\": 45000,\r\n    \"models\": [\r\n        {\r\n            \"model_name\": \"gpt-4\",\r\n            \"requests\": 100,\r\n            \"input_tokens\": 15000,\r\n            \"output_tokens\": 20000,\r\n            \"total_tokens\": 35000,\r\n            \"avg_response_time_ms\": 1200\r\n        },\r\n        {\r\n            \"model_name\": \"gpt-3.5-turbo\",\r\n            \"requests\": 50,\r\n            \"input_tokens\": 5000,\r\n            \"output_tokens\": 5000,\r\n            \"total_tokens\": 10000,\r\n            \"avg_response_time_ms\": 800\r\n        }\r\n    ]\r\n}\r\n```\r\n\r\n## Configuration Options\r\n\r\n| Parameter | Type | Default | Description |\r\n|-----------|------|---------|-------------|\r\n| `service_url` | str | Required | Azure OpenAI service endpoint URL |\r\n| `api_key` | str | Required | Azure OpenAI API key |\r\n| `deployment_name` | str | Required | Azure OpenAI deployment name |\r\n| `api_version` | str | Required | Azure OpenAI API version |\r\n| `default_model` | str | 'gpt-4' | Default model identifier |\r\n| `timeout` | int | 30 | Request timeout in seconds |\r\n\r\n## API Reference\r\n\r\n### Core Methods\r\n\r\n#### `send_request(prompt_payload, customer_id, organization_id, response_type=\"text\", **kwargs)`\r\n\r\nSend a request to the Azure OpenAI service using the new prompt payload format.\r\n\r\n**Parameters:**\r\n- `prompt_payload` (List[Dict[str, Any]]): Array of message objects with role and content\r\n- `customer_id` (int): Customer identifier\r\n- `organization_id` (int): Organization identifier\r\n- `response_type` (str): Response format - \"text\" or \"json\"\r\n- `model` (str, optional): Model to use for this request\r\n- `temperature` (float, optional): Sampling temperature (0.0-1.0)\r\n- `max_tokens` (int, optional): Maximum tokens in response\r\n\r\n**Message Format:**\r\n```python\r\n# Text message\r\n{\"role\": \"user|assistant|system\", \"content\": \"text content\"}\r\n\r\n# Multimodal message\r\n{\r\n    \"role\": \"user|assistant|system\", \r\n    \"content\": [\r\n        {\"type\": \"text\", \"text\": \"text content\"},\r\n        {\"type\": \"image_url\", \"image_url\": {\"url\": \"image_url_or_base64\"}}\r\n    ]\r\n}\r\n```\r\n\r\n**Returns:**\r\n- `dict`: Response containing output text, processed output, token counts, metadata, and original prompt\r\n\r\n#### `get_usage_stats(**filters)`\r\n\r\nGet usage statistics with optional filtering.\r\n\r\n**Parameters:**\r\n- `customer_id` (int, optional): Filter by customer\r\n- `organization_id` (int, optional): Filter by organization\r\n- `start_date` (str, optional): Start date in ISO format\r\n- `end_date` (str, optional): End date in ISO format\r\n\r\n**Returns:**\r\n- `dict`: Usage statistics including request counts, token usage, and performance metrics\r\n\r\n#### `close()`\r\n\r\nClose database connections and clean up resources.\r\n\r\n## Token Calculation\r\n\r\nThe wrapper intelligently handles token calculation for different content types:\r\n\r\n- **Text content**: Direct token counting using the specified model's tokenizer\r\n- **Image content**: Uses placeholder tokens for estimation (actual tokens may vary based on image size and complexity)\r\n- **Mixed content**: Combines text and image token estimates\r\n\r\n## Error Handling\r\n\r\nThe wrapper provides comprehensive error handling:\r\n\r\n```python\r\nfrom hibiz_llm_wrapper.exceptions import APIError, DatabaseError\r\n\r\ntry:\r\n    response = wrapper.send_request(\r\n        prompt_payload=[{\"role\": \"user\", \"content\": \"Hello\"}],\r\n        customer_id=1,\r\n        organization_id=1\r\n    )\r\nexcept APIError as e:\r\n    print(f\"API request failed: {e}\")\r\nexcept DatabaseError as e:\r\n    print(f\"Database operation failed: {e}\")\r\n```\r\n\r\n## Requirements\r\n\r\n- Python 3.8+\r\n- Pillow (for image processing)\r\n- tiktoken (for token counting)\r\n\r\n## License\r\n\r\nThis project is licensed under the MIT License.\r\n\r\n## Contributing\r\n\r\nContributions are welcome! Please feel free to submit a Pull Request.\r\n\r\n## Acknowledgments\r\n\r\n- Thanks to all contributors who have helped shape this project\r\n- Built with love for the AI/ML community\r\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "A comprehensive Python wrapper for Large Language Models with database integration and usage tracking",
    "version": "1.0.2",
    "project_urls": null,
    "split_keywords": [
        "llm",
        " language-model",
        " openai",
        " azure",
        " gpt",
        " ai",
        " machine-learning",
        " database",
        " postgresql",
        " mysql",
        " mongodb",
        " usage-tracking",
        " api-wrapper"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "1eff45f854fb233b60a3f4745b474f8105027cac170daea4d451c7d3fe08a6c9",
                "md5": "033f8a8061d24a842a6a78ec23a5105d",
                "sha256": "5608f92f8aa33d2576a27323695ee80e5b03c5e8d2f63328a6d071d245adce27"
            },
            "downloads": -1,
            "filename": "hibiz_llm_wrapper-1.0.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "033f8a8061d24a842a6a78ec23a5105d",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 13209,
            "upload_time": "2025-07-25T05:21:18",
            "upload_time_iso_8601": "2025-07-25T05:21:18.066830Z",
            "url": "https://files.pythonhosted.org/packages/1e/ff/45f854fb233b60a3f4745b474f8105027cac170daea4d451c7d3fe08a6c9/hibiz_llm_wrapper-1.0.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "1cabd85c8ac5d88e43614f195d9595f6ee314c1b02fc24d159e08c1a029d475f",
                "md5": "de9e6afbbbec1424a43962d81879a2de",
                "sha256": "201ccdea68080145158a420398b6c5127d6d10c9dbcfb0aa5f2ae270d2c97350"
            },
            "downloads": -1,
            "filename": "hibiz_llm_wrapper-1.0.2.tar.gz",
            "has_sig": false,
            "md5_digest": "de9e6afbbbec1424a43962d81879a2de",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 20389,
            "upload_time": "2025-07-25T05:21:20",
            "upload_time_iso_8601": "2025-07-25T05:21:20.851621Z",
            "url": "https://files.pythonhosted.org/packages/1c/ab/d85c8ac5d88e43614f195d9595f6ee314c1b02fc24d159e08c1a029d475f/hibiz_llm_wrapper-1.0.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-25 05:21:20",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "hibiz-llm-wrapper"
}
        
Elapsed time: 0.41309s