hidet


Namehidet JSON
Version 0.5.0 PyPI version JSON
download
home_pagehttps://docs.hidet.org
SummaryHidet: a compilation-based DNN inference framework.
upload_time2024-12-21 23:23:52
maintainerNone
docs_urlNone
authorNone
requires_python>=3.9
licenseApache-2.0
keywords deep learning machine learning neural network inference compiler
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Hidet: An Open-Source Deep Learning Compiler
[**Documentation**](http://hidet.org/docs)  |
[**Research Paper**](https://dl.acm.org/doi/10.1145/3575693.3575702)  |
[**Releases**](https://github.com/hidet-org/hidet/releases) |
[**Contributing**](https://hidet.org/docs/stable/developer-guides/contributing.html)

![GitHub](https://img.shields.io/github/license/hidet-org/hidet)
![GitHub Workflow Status](https://img.shields.io/github/actions/workflow/status/hidet-org/hidet/tests.yaml)


Hidet is an open-source deep learning compiler, written in Python. 
It supports end-to-end compilation of DNN models from PyTorch and ONNX to efficient cuda kernels.
A series of graph-level and operator-level optimizations are applied to optimize the performance.

Currently, hidet focuses on optimizing the inference workloads on NVIDIA GPUs, and requires
- Linux OS
- CUDA Toolkit 11.6+
- Python 3.9+

## Getting Started

### Installation
If you are going to use hidet's API 
```bash
pip install hidet
```

If you are going to use hidet as PyTorch compiler 
```bash
pip install hidet[torch]
```

You can also try the [nightly build version](https://docs.hidet.org/stable/getting-started/install.html) or [build from source](https://docs.hidet.org/stable/getting-started/build-from-source.html#).

### Usage

Optimize a PyTorch model through hidet (require PyTorch 2.3):
```python
import torch

# Define pytorch model
model = torch.hub.load('pytorch/vision:v0.6.0', 'resnet18', pretrained=True).cuda().eval()
x = torch.rand(1, 3, 224, 224).cuda()

# Compile the model through Hidet
# Optional: set optimization options (see our documentation for more details)
#   import hidet 
#   hidet.torch.dynamo_config.search_space(2)  # tune each tunable operator
model_opt = torch.compile(model, backend='hidet')  

# Run the optimized model
y = model_opt(x)
```
See the following tutorials to learn other usages:
- [Quick Start](http://hidet.org/docs/stable/gallery/getting-started/quick-start.html)
- [Optimize PyTorch models](http://hidet.org/docs/stable/gallery/tutorials/optimize-pytorch-model.html)
- [Optimize ONNX models](http://hidet.org/docs/stable/gallery/tutorials/optimize-onnx-model.html)

## Publication
Hidet originates from the following research work:

>  **Hidet: Task-Mapping Programming Paradigm for Deep Learning Tensor Programs**  
>  Yaoyao Ding, Cody Hao Yu, Bojian Zheng, Yizhi Liu, Yida Wang, and Gennady Pekhimenko.  
>  ASPLOS '23

If you used **Hidet** in your research, welcome to cite our
[paper](https://dl.acm.org/doi/10.1145/3575693.3575702).

## Development 
Hidet is currently under active development by a team at [CentML Inc](https://centml.ai/). 

## Contributing
We welcome contributions from the community. Please see 
[contribution guide](https://hidet.org/docs/stable/developer-guides/contributing.html)
for more details.

## License
Hidet is released under the [Apache 2.0 license](LICENSE).

            

Raw data

            {
    "_id": null,
    "home_page": "https://docs.hidet.org",
    "name": "hidet",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": null,
    "keywords": "deep learning, machine learning, neural network, inference, compiler",
    "author": null,
    "author_email": null,
    "download_url": null,
    "platform": "linux",
    "description": "# Hidet: An Open-Source Deep Learning Compiler\n[**Documentation**](http://hidet.org/docs)  |\n[**Research Paper**](https://dl.acm.org/doi/10.1145/3575693.3575702)  |\n[**Releases**](https://github.com/hidet-org/hidet/releases) |\n[**Contributing**](https://hidet.org/docs/stable/developer-guides/contributing.html)\n\n![GitHub](https://img.shields.io/github/license/hidet-org/hidet)\n![GitHub Workflow Status](https://img.shields.io/github/actions/workflow/status/hidet-org/hidet/tests.yaml)\n\n\nHidet is an open-source deep learning compiler, written in Python. \nIt supports end-to-end compilation of DNN models from PyTorch and ONNX to efficient cuda kernels.\nA series of graph-level and operator-level optimizations are applied to optimize the performance.\n\nCurrently, hidet focuses on optimizing the inference workloads on NVIDIA GPUs, and requires\n- Linux OS\n- CUDA Toolkit 11.6+\n- Python 3.9+\n\n## Getting Started\n\n### Installation\nIf you are going to use hidet's API \n```bash\npip install hidet\n```\n\nIf you are going to use hidet as PyTorch compiler \n```bash\npip install hidet[torch]\n```\n\nYou can also try the [nightly build version](https://docs.hidet.org/stable/getting-started/install.html) or [build from source](https://docs.hidet.org/stable/getting-started/build-from-source.html#).\n\n### Usage\n\nOptimize a PyTorch model through hidet (require PyTorch 2.3):\n```python\nimport torch\n\n# Define pytorch model\nmodel = torch.hub.load('pytorch/vision:v0.6.0', 'resnet18', pretrained=True).cuda().eval()\nx = torch.rand(1, 3, 224, 224).cuda()\n\n# Compile the model through Hidet\n# Optional: set optimization options (see our documentation for more details)\n#   import hidet \n#   hidet.torch.dynamo_config.search_space(2)  # tune each tunable operator\nmodel_opt = torch.compile(model, backend='hidet')  \n\n# Run the optimized model\ny = model_opt(x)\n```\nSee the following tutorials to learn other usages:\n- [Quick Start](http://hidet.org/docs/stable/gallery/getting-started/quick-start.html)\n- [Optimize PyTorch models](http://hidet.org/docs/stable/gallery/tutorials/optimize-pytorch-model.html)\n- [Optimize ONNX models](http://hidet.org/docs/stable/gallery/tutorials/optimize-onnx-model.html)\n\n## Publication\nHidet originates from the following research work:\n\n>  **Hidet: Task-Mapping Programming Paradigm for Deep Learning Tensor Programs**  \n>  Yaoyao Ding, Cody Hao Yu, Bojian Zheng, Yizhi Liu, Yida Wang, and Gennady Pekhimenko.  \n>  ASPLOS '23\n\nIf you used **Hidet** in your research, welcome to cite our\n[paper](https://dl.acm.org/doi/10.1145/3575693.3575702).\n\n## Development \nHidet is currently under active development by a team at [CentML Inc](https://centml.ai/). \n\n## Contributing\nWe welcome contributions from the community. Please see \n[contribution guide](https://hidet.org/docs/stable/developer-guides/contributing.html)\nfor more details.\n\n## License\nHidet is released under the [Apache 2.0 license](LICENSE).\n",
    "bugtrack_url": null,
    "license": "Apache-2.0",
    "summary": "Hidet: a compilation-based DNN inference framework.",
    "version": "0.5.0",
    "project_urls": {
        "Homepage": "https://docs.hidet.org"
    },
    "split_keywords": [
        "deep learning",
        " machine learning",
        " neural network",
        " inference",
        " compiler"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "dbf6dd34c30f66b7fa32fc3fd8294be11f0f710ae9be2af9e23615e104ef8918",
                "md5": "0fe6cafae6fc91e70fa297b8007e7489",
                "sha256": "8455fdee5212c9f0556a1b5c7df9a9242d55b9c9efad5b4925f60112744c0d4c"
            },
            "downloads": -1,
            "filename": "hidet-0.5.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "0fe6cafae6fc91e70fa297b8007e7489",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 1420790,
            "upload_time": "2024-12-21T23:23:52",
            "upload_time_iso_8601": "2024-12-21T23:23:52.717792Z",
            "url": "https://files.pythonhosted.org/packages/db/f6/dd34c30f66b7fa32fc3fd8294be11f0f710ae9be2af9e23615e104ef8918/hidet-0.5.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-12-21 23:23:52",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "hidet"
}
        
Elapsed time: 1.86029s