hidet


Namehidet JSON
Version 0.6.1 PyPI version JSON
download
home_pageNone
SummaryHidet: a compilation-based DNN inference framework.
upload_time2025-09-02 03:56:09
maintainerNone
docs_urlNone
authorCentML Inc.
requires_python>=3.9
licenseApache-2.0
keywords deep learning machine learning neural network inference compiler
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Hidet: An Open-Source Deep Learning Compiler
[**Documentation**](http://hidet.org/docs)  |
[**Research Paper**](https://dl.acm.org/doi/10.1145/3575693.3575702)  |
[**Releases**](https://github.com/hidet-org/hidet/releases) |
[**Contributing**](https://hidet.org/docs/stable/developer-guides/contributing.html)

![GitHub](https://img.shields.io/github/license/hidet-org/hidet)
![GitHub Workflow Status](https://img.shields.io/github/actions/workflow/status/hidet-org/hidet/tests.yaml)


Hidet is an open-source deep learning compiler, written in Python. 
It supports end-to-end compilation of DNN models from PyTorch and ONNX to efficient cuda kernels.
A series of graph-level and operator-level optimizations are applied to optimize the performance.

Currently, hidet focuses on optimizing the inference workloads on NVIDIA GPUs, and requires
- Linux OS
- CUDA Toolkit 11.6+
- Python 3.9+

## Getting Started

### Installation
Please install hidet via
```bash
pip install hidet
```

You can also install hidet via [building from source](https://docs.hidet.org/stable/getting-started/build-from-source.html#).

### Usage

Optimize a PyTorch model through hidet (require PyTorch 2.3):
```python
import torch

# Define pytorch model
model = torch.hub.load('pytorch/vision:v0.6.0', 'resnet18', pretrained=True).cuda().eval()
x = torch.rand(1, 3, 224, 224).cuda()

# Compile the model through Hidet
# Optional: set optimization options (see our documentation for more details)
#   import hidet 
#   hidet.torch.dynamo_config.search_space(2)  # tune each tunable operator
model_opt = torch.compile(model, backend='hidet')  

# Run the optimized model
y = model_opt(x)
```
See the following tutorials to learn other usages:
- [Quick Start](http://hidet.org/docs/stable/gallery/getting-started/quick-start.html)

## Publication
Hidet originates from the following research work:

>  **Hidet: Task-Mapping Programming Paradigm for Deep Learning Tensor Programs**  
>  Yaoyao Ding, Cody Hao Yu, Bojian Zheng, Yizhi Liu, Yida Wang, and Gennady Pekhimenko.  
>  ASPLOS '23

If you used **Hidet** in your research, welcome to cite our
[paper](https://dl.acm.org/doi/10.1145/3575693.3575702).

## Development 
Hidet is currently under active development by a team at [CentML Inc](https://centml.ai/). 

## Contributing
We welcome contributions from the community. Please see 
[contribution guide](https://hidet.org/docs/stable/developer-guides/contributing.html)
for more details.

## License
Hidet is released under the [Apache 2.0 license](LICENSE).

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "hidet",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": null,
    "keywords": "Deep Learning, Machine Learning, Neural Network, Inference, Compiler",
    "author": "CentML Inc.",
    "author_email": null,
    "download_url": null,
    "platform": null,
    "description": "# Hidet: An Open-Source Deep Learning Compiler\n[**Documentation**](http://hidet.org/docs)  |\n[**Research Paper**](https://dl.acm.org/doi/10.1145/3575693.3575702)  |\n[**Releases**](https://github.com/hidet-org/hidet/releases) |\n[**Contributing**](https://hidet.org/docs/stable/developer-guides/contributing.html)\n\n![GitHub](https://img.shields.io/github/license/hidet-org/hidet)\n![GitHub Workflow Status](https://img.shields.io/github/actions/workflow/status/hidet-org/hidet/tests.yaml)\n\n\nHidet is an open-source deep learning compiler, written in Python. \nIt supports end-to-end compilation of DNN models from PyTorch and ONNX to efficient cuda kernels.\nA series of graph-level and operator-level optimizations are applied to optimize the performance.\n\nCurrently, hidet focuses on optimizing the inference workloads on NVIDIA GPUs, and requires\n- Linux OS\n- CUDA Toolkit 11.6+\n- Python 3.9+\n\n## Getting Started\n\n### Installation\nPlease install hidet via\n```bash\npip install hidet\n```\n\nYou can also install hidet via [building from source](https://docs.hidet.org/stable/getting-started/build-from-source.html#).\n\n### Usage\n\nOptimize a PyTorch model through hidet (require PyTorch 2.3):\n```python\nimport torch\n\n# Define pytorch model\nmodel = torch.hub.load('pytorch/vision:v0.6.0', 'resnet18', pretrained=True).cuda().eval()\nx = torch.rand(1, 3, 224, 224).cuda()\n\n# Compile the model through Hidet\n# Optional: set optimization options (see our documentation for more details)\n#   import hidet \n#   hidet.torch.dynamo_config.search_space(2)  # tune each tunable operator\nmodel_opt = torch.compile(model, backend='hidet')  \n\n# Run the optimized model\ny = model_opt(x)\n```\nSee the following tutorials to learn other usages:\n- [Quick Start](http://hidet.org/docs/stable/gallery/getting-started/quick-start.html)\n\n## Publication\nHidet originates from the following research work:\n\n>  **Hidet: Task-Mapping Programming Paradigm for Deep Learning Tensor Programs**  \n>  Yaoyao Ding, Cody Hao Yu, Bojian Zheng, Yizhi Liu, Yida Wang, and Gennady Pekhimenko.  \n>  ASPLOS '23\n\nIf you used **Hidet** in your research, welcome to cite our\n[paper](https://dl.acm.org/doi/10.1145/3575693.3575702).\n\n## Development \nHidet is currently under active development by a team at [CentML Inc](https://centml.ai/). \n\n## Contributing\nWe welcome contributions from the community. Please see \n[contribution guide](https://hidet.org/docs/stable/developer-guides/contributing.html)\nfor more details.\n\n## License\nHidet is released under the [Apache 2.0 license](LICENSE).\n",
    "bugtrack_url": null,
    "license": "Apache-2.0",
    "summary": "Hidet: a compilation-based DNN inference framework.",
    "version": "0.6.1",
    "project_urls": {
        "Documentation": "https://hidet.org",
        "Homepage": "https://github.com/hidet-org/hidet"
    },
    "split_keywords": [
        "deep learning",
        " machine learning",
        " neural network",
        " inference",
        " compiler"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "7853a4d475dad8141b21c263aa6af68b5e2a3a3491be90c5c1b904f1542b0fd2",
                "md5": "619c405a33adefc23661ad8b7d2926a6",
                "sha256": "6ab248a46749e44b57e25679591da4747c0d6a2379ce095122c53c6dd86e5888"
            },
            "downloads": -1,
            "filename": "hidet-0.6.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "619c405a33adefc23661ad8b7d2926a6",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 1276138,
            "upload_time": "2025-09-02T03:56:09",
            "upload_time_iso_8601": "2025-09-02T03:56:09.129175Z",
            "url": "https://files.pythonhosted.org/packages/78/53/a4d475dad8141b21c263aa6af68b5e2a3a3491be90c5c1b904f1542b0fd2/hidet-0.6.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-09-02 03:56:09",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "hidet-org",
    "github_project": "hidet",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "hidet"
}
        
Elapsed time: 3.84806s