hierarchical-label-propagation


Namehierarchical-label-propagation JSON
Version 0.1.0 PyPI version JSON
download
home_pageNone
SummaryPython implementation of Hierarchical Label Propagation (HLP)
upload_time2024-09-04 11:56:30
maintainerNone
docs_urlNone
authorNone
requires_python>=3.8
licenseNone
keywords hlp hierarchical label propagation hierarchy ontology
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Hierarchical Label Propagation (HLP)
Implementation of Hierarchical Label Propagation (HLP) in python.

## Installation
This code is included in the `hierarchical-label-propagation` package. To install it, you can run the following command:

```bash
pip install hierarchical-label-propagation
```

## Usage
The `hierarchical-label-propagation` package provides a class called `HLP` that can be used to run the Hierarchical Label Propagation algorithm. The following code snippet shows how to use it:

```python
from hierarchical_label_propagation import HLP

hlp = HLP() # Creates an instance with the default HLP method for AudioSet.
``` 

HLP can now be applied to the AudioSet targets. Using the same API, it can either be done to the target of a single example or to the targets of a batch of examples. The following code snippet shows how to apply HLP:

```python
y = hlp.propagate(y) # Propagates the labels of a single example.
```
or
```python
X, Y, file_names = batch
Y = hlp.propagate(Y) # Propagates the labels of a batch of examples.
```

Please note that hlp.propagate() takes a 1D (# classes) or 2D (Batch Size, # classes) torch.Tensor as an input and returns the propagated labels as a torch.Tensor of the same shape as the input.

the `propagate` method can also be used to propagate on continuous values using the same API. This is true if and only if a higher value indicates a higher confidence in the label. This can be useful to apply HLP to the output of a classifier as a post-processing step.

## Citation
If you use this code in your research, please consider citing the following paper:

```
Citation will be added soon.
```
            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "hierarchical-label-propagation",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "HLP, Hierarchical Label Propagation, Hierarchy, Ontology",
    "author": null,
    "author_email": "Ludovic TUNCAY <ludovic.tuncay@irit.fr>",
    "download_url": "https://files.pythonhosted.org/packages/ce/bc/cf2e077f6fea127d2ede1835023c467b692128fb874ad5fd97cf34fdfcc0/hierarchical_label_propagation-0.1.0.tar.gz",
    "platform": null,
    "description": "# Hierarchical Label Propagation (HLP)\nImplementation of Hierarchical Label Propagation (HLP) in python.\n\n## Installation\nThis code is included in the `hierarchical-label-propagation` package. To install it, you can run the following command:\n\n```bash\npip install hierarchical-label-propagation\n```\n\n## Usage\nThe `hierarchical-label-propagation` package provides a class called `HLP` that can be used to run the Hierarchical Label Propagation algorithm. The following code snippet shows how to use it:\n\n```python\nfrom hierarchical_label_propagation import HLP\n\nhlp = HLP() # Creates an instance with the default HLP method for AudioSet.\n``` \n\nHLP can now be applied to the AudioSet targets. Using the same API, it can either be done to the target of a single example or to the targets of a batch of examples. The following code snippet shows how to apply HLP:\n\n```python\ny = hlp.propagate(y) # Propagates the labels of a single example.\n```\nor\n```python\nX, Y, file_names = batch\nY = hlp.propagate(Y) # Propagates the labels of a batch of examples.\n```\n\nPlease note that hlp.propagate() takes a 1D (# classes) or 2D (Batch Size, # classes) torch.Tensor as an input and returns the propagated labels as a torch.Tensor of the same shape as the input.\n\nthe `propagate` method can also be used to propagate on continuous values using the same API. This is true if and only if a higher value indicates a higher confidence in the label. This can be useful to apply HLP to the output of a classifier as a post-processing step.\n\n## Citation\nIf you use this code in your research, please consider citing the following paper:\n\n```\nCitation will be added soon.\n```",
    "bugtrack_url": null,
    "license": null,
    "summary": "Python implementation of Hierarchical Label Propagation (HLP)",
    "version": "0.1.0",
    "project_urls": {
        "Homepage": "https://github.com/LudovicTuncay/hierarchical-label-propagation",
        "Issues": "https://github.com/LudovicTuncay/hierarchical-label-propagation/issues"
    },
    "split_keywords": [
        "hlp",
        " hierarchical label propagation",
        " hierarchy",
        " ontology"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "447421a7b6da9a7b74dced343ec6b7ce511d59175c6ebce2892f5ca0a673748e",
                "md5": "f4a8f01eff550a60d76cc715bf97dd65",
                "sha256": "fc6e0310e8f1967895e9bd3a255a422b49bad5a1654def04eb8586ec87d61d8a"
            },
            "downloads": -1,
            "filename": "hierarchical_label_propagation-0.1.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "f4a8f01eff550a60d76cc715bf97dd65",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 8219,
            "upload_time": "2024-09-04T11:56:28",
            "upload_time_iso_8601": "2024-09-04T11:56:28.541003Z",
            "url": "https://files.pythonhosted.org/packages/44/74/21a7b6da9a7b74dced343ec6b7ce511d59175c6ebce2892f5ca0a673748e/hierarchical_label_propagation-0.1.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "cebccf2e077f6fea127d2ede1835023c467b692128fb874ad5fd97cf34fdfcc0",
                "md5": "7d1e6bfe71a51ffea25f138d856340fa",
                "sha256": "3eba548716d6b45556b861799115de66e18a6d33c653fa470d3559cbd53b2234"
            },
            "downloads": -1,
            "filename": "hierarchical_label_propagation-0.1.0.tar.gz",
            "has_sig": false,
            "md5_digest": "7d1e6bfe71a51ffea25f138d856340fa",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 8915,
            "upload_time": "2024-09-04T11:56:30",
            "upload_time_iso_8601": "2024-09-04T11:56:30.384307Z",
            "url": "https://files.pythonhosted.org/packages/ce/bc/cf2e077f6fea127d2ede1835023c467b692128fb874ad5fd97cf34fdfcc0/hierarchical_label_propagation-0.1.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-09-04 11:56:30",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "LudovicTuncay",
    "github_project": "hierarchical-label-propagation",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "hierarchical-label-propagation"
}
        
Elapsed time: 0.33983s