# HiPlot - High dimensional Interactive Plotting [![CircleCI](https://circleci.com/gh/facebookresearch/hiplot/tree/main.svg?style=svg&circle-token=c89b6825078e174cf35bdc18e4ad4a16e28876f9)](https://circleci.com/gh/facebookresearch/hiplot/tree/main)
![Logo](https://raw.githubusercontent.com/facebookresearch/hiplot/main/hiplot/static/logo.png)
[![Support Ukraine](https://img.shields.io/badge/Support-Ukraine-FFD500?style=flat&labelColor=005BBB)](https://opensource.fb.com/support-ukraine)
[![License: MIT](https://img.shields.io/badge/License-MIT-brightgreen.svg)](https://opensource.org/licenses/MIT)
[![PyPI download month](https://img.shields.io/pypi/dm/hiplot.svg)](https://pypi.python.org/pypi/hiplot/) [![PyPI version](https://img.shields.io/pypi/v/hiplot.svg)](https://pypi.python.org/pypi/hiplot/) [![docs](https://img.shields.io/badge/docs-passing-brightgreen.svg)](https://facebookresearch.github.io/hiplot/index.html) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/facebookresearch/hiplot/blob/main/examples/HiPlotColabExample.ipynb)
HiPlot is a lightweight interactive visualization tool to help AI researchers discover correlations and patterns in high-dimensional data using parallel plots and other graphical ways to represent information.
### [Try a demo now with sweep data](https://facebookresearch.github.io/hiplot/_static/demo/ml1.csv.html) or [upload your CSV](https://facebookresearch.github.io/hiplot/_static/hiplot_upload.html) or [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/facebookresearch/hiplot/blob/main/examples/HiPlotColabExample.ipynb)
There are several modes to HiPlot:
- As a web-server (if your data is a CSV for instance)
- In a jupyter notebook (to visualize python data), or in [Streamlit apps](https://facebookresearch.github.io/hiplot/tuto_streamlit.html)
- In CLI to render standalone HTML
```bash
pip install -U hiplot # Or for conda users: conda install -c conda-forge hiplot
```
If you have a jupyter notebook, you can get started with something as simple as:
```python
import hiplot as hip
data = [{'dropout':0.1, 'lr': 0.001, 'loss': 10.0, 'optimizer': 'SGD'},
{'dropout':0.15, 'lr': 0.01, 'loss': 3.5, 'optimizer': 'Adam'},
{'dropout':0.3, 'lr': 0.1, 'loss': 4.5, 'optimizer': 'Adam'}]
hip.Experiment.from_iterable(data).display()
```
### [See the live result](https://facebookresearch.github.io/hiplot/_static/demo/demo_basic_usage.html)
![Result](https://raw.githubusercontent.com/facebookresearch/hiplot/main/assets/notebook.png)
## Links
* Blog post: https://ai.facebook.com/blog/hiplot-high-dimensional-interactive-plots-made-easy/
* Documentation: https://facebookresearch.github.io/hiplot/index.html
* Pypi package: https://pypi.org/project/hiplot/
* Conda package: https://anaconda.org/conda-forge/hiplot
* NPM package: https://www.npmjs.com/package/hiplot
* Examples: https://github.com/facebookresearch/hiplot/tree/main/examples
## Citing
```bibtex
@misc{hiplot,
author = {Haziza, D. and Rapin, J. and Synnaeve, G.},
title = {{Hiplot, interactive high-dimensionality plots}},
year = {2020},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/facebookresearch/hiplot}},
}
```
## Credits
Inspired by and based on code from [Kai Chang](http://bl.ocks.org/syntagmatic/3150059), [Mike Bostock](http://bl.ocks.org/1341021) and [Jason Davies](http://bl.ocks.org/1341281).
External contributors (*please add your name when you submit your first pull request*):
- [louismartin](https://github.com/louismartin)
- [GoldenCorgi](https://github.com/GoldenCorgi)
- [callistachang](https://github.com/callistachang)
## License
HiPlot is [MIT](LICENSE) licensed, as found in the [LICENSE](LICENSE) file.
Raw data
{
"_id": null,
"home_page": "https://github.com/facebookresearch/hiplot",
"name": "hiplot",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.6",
"maintainer_email": "",
"keywords": "",
"author": "Facebook AI Research",
"author_email": "",
"download_url": "https://files.pythonhosted.org/packages/81/f0/5b17e48ebfcbd9f8014ee76949091e640929714c29937ea3a04fde9ac488/hiplot-0.1.33.tar.gz",
"platform": null,
"description": "# HiPlot - High dimensional Interactive Plotting [![CircleCI](https://circleci.com/gh/facebookresearch/hiplot/tree/main.svg?style=svg&circle-token=c89b6825078e174cf35bdc18e4ad4a16e28876f9)](https://circleci.com/gh/facebookresearch/hiplot/tree/main)\n\n\n![Logo](https://raw.githubusercontent.com/facebookresearch/hiplot/main/hiplot/static/logo.png)\n\n[![Support Ukraine](https://img.shields.io/badge/Support-Ukraine-FFD500?style=flat&labelColor=005BBB)](https://opensource.fb.com/support-ukraine)\n[![License: MIT](https://img.shields.io/badge/License-MIT-brightgreen.svg)](https://opensource.org/licenses/MIT)\n[![PyPI download month](https://img.shields.io/pypi/dm/hiplot.svg)](https://pypi.python.org/pypi/hiplot/) [![PyPI version](https://img.shields.io/pypi/v/hiplot.svg)](https://pypi.python.org/pypi/hiplot/) [![docs](https://img.shields.io/badge/docs-passing-brightgreen.svg)](https://facebookresearch.github.io/hiplot/index.html) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/facebookresearch/hiplot/blob/main/examples/HiPlotColabExample.ipynb)\n\n\nHiPlot is a lightweight interactive visualization tool to help AI researchers discover correlations and patterns in high-dimensional data using parallel plots and other graphical ways to represent information.\n\n### [Try a demo now with sweep data](https://facebookresearch.github.io/hiplot/_static/demo/ml1.csv.html) or [upload your CSV](https://facebookresearch.github.io/hiplot/_static/hiplot_upload.html) or [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/facebookresearch/hiplot/blob/main/examples/HiPlotColabExample.ipynb)\n\nThere are several modes to HiPlot:\n- As a web-server (if your data is a CSV for instance)\n- In a jupyter notebook (to visualize python data), or in [Streamlit apps](https://facebookresearch.github.io/hiplot/tuto_streamlit.html)\n- In CLI to render standalone HTML\n\n\n```bash\npip install -U hiplot # Or for conda users: conda install -c conda-forge hiplot\n```\n\nIf you have a jupyter notebook, you can get started with something as simple as:\n\n```python\nimport hiplot as hip\ndata = [{'dropout':0.1, 'lr': 0.001, 'loss': 10.0, 'optimizer': 'SGD'},\n {'dropout':0.15, 'lr': 0.01, 'loss': 3.5, 'optimizer': 'Adam'},\n {'dropout':0.3, 'lr': 0.1, 'loss': 4.5, 'optimizer': 'Adam'}]\nhip.Experiment.from_iterable(data).display()\n```\n\n### [See the live result](https://facebookresearch.github.io/hiplot/_static/demo/demo_basic_usage.html)\n![Result](https://raw.githubusercontent.com/facebookresearch/hiplot/main/assets/notebook.png)\n\n## Links\n\n* Blog post: https://ai.facebook.com/blog/hiplot-high-dimensional-interactive-plots-made-easy/\n* Documentation: https://facebookresearch.github.io/hiplot/index.html\n* Pypi package: https://pypi.org/project/hiplot/\n* Conda package: https://anaconda.org/conda-forge/hiplot\n* NPM package: https://www.npmjs.com/package/hiplot\n* Examples: https://github.com/facebookresearch/hiplot/tree/main/examples\n\n\n## Citing\n\n```bibtex\n@misc{hiplot,\n author = {Haziza, D. and Rapin, J. and Synnaeve, G.},\n title = {{Hiplot, interactive high-dimensionality plots}},\n year = {2020},\n publisher = {GitHub},\n journal = {GitHub repository},\n howpublished = {\\url{https://github.com/facebookresearch/hiplot}},\n}\n```\n\n## Credits\nInspired by and based on code from [Kai Chang](http://bl.ocks.org/syntagmatic/3150059), [Mike Bostock](http://bl.ocks.org/1341021) and [Jason Davies](http://bl.ocks.org/1341281).\n\nExternal contributors (*please add your name when you submit your first pull request*):\n- [louismartin](https://github.com/louismartin)\n- [GoldenCorgi](https://github.com/GoldenCorgi)\n- [callistachang](https://github.com/callistachang)\n\n\n## License\nHiPlot is [MIT](LICENSE) licensed, as found in the [LICENSE](LICENSE) file.\n\n\n",
"bugtrack_url": null,
"license": "",
"summary": "High dimensional Interactive Plotting tool",
"version": "0.1.33",
"project_urls": {
"Homepage": "https://github.com/facebookresearch/hiplot"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "aea62f37a5fc35f9889c4ab09dea62ec0f9ae304789be1dc4965d231822a3e78",
"md5": "8a0e170b3a16f98b5b104ff03d9c7ce0",
"sha256": "82761a0e087a04d696914f4e141197e9f6ae776a590369ec9db01e26710f9f85"
},
"downloads": -1,
"filename": "hiplot-0.1.33-py3-none-any.whl",
"has_sig": false,
"md5_digest": "8a0e170b3a16f98b5b104ff03d9c7ce0",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.6",
"size": 863166,
"upload_time": "2022-05-31T09:00:35",
"upload_time_iso_8601": "2022-05-31T09:00:35.686634Z",
"url": "https://files.pythonhosted.org/packages/ae/a6/2f37a5fc35f9889c4ab09dea62ec0f9ae304789be1dc4965d231822a3e78/hiplot-0.1.33-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "81f05b17e48ebfcbd9f8014ee76949091e640929714c29937ea3a04fde9ac488",
"md5": "a51f31f7a5e6f8521628c8718a594858",
"sha256": "f78a1bf52fac5dc8a59ac37454978f7343e7659ad8a419dec4c881539126ac9f"
},
"downloads": -1,
"filename": "hiplot-0.1.33.tar.gz",
"has_sig": false,
"md5_digest": "a51f31f7a5e6f8521628c8718a594858",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.6",
"size": 848226,
"upload_time": "2022-05-31T09:00:37",
"upload_time_iso_8601": "2022-05-31T09:00:37.922163Z",
"url": "https://files.pythonhosted.org/packages/81/f0/5b17e48ebfcbd9f8014ee76949091e640929714c29937ea3a04fde9ac488/hiplot-0.1.33.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2022-05-31 09:00:37",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "facebookresearch",
"github_project": "hiplot",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"circle": true,
"lcname": "hiplot"
}