# ๐ฌ Hyper-Material AI (HMAI)
**Inventing the next class of matter by merging AI, quantum field theory, and entropic design principles.**
[](LICENSE)
[](https://python.org)
[](https://tensorflow.org)
[](docs/)
## ๐ What is HMAI?
HMAI is the **world's first AI framework** for inventing entirely new classes of matter with properties that don't exist in nature. Unlike traditional materials discovery that searches through known possibilities, HMAI **creates the fundamental rules** that govern matter and then translates them into atomic blueprints.
### Impossible Properties Made Possible
- ๐ **Negative Mass Materials** - Stable matter that falls upward
- ๐ **Exotic Light Bending** - Surfaces with impossible refractive indices
- โก **Room Temperature Magnetism** - Stable magnetic moments at 300K
- ๐ช **Quantum Coherent Solids** - Macroscopic quantum effects in bulk materials
## ๐งฉ How It Works
```mermaid
graph TD
A[Target Properties] --> B[Generative QFT Engine]
B --> C[Novel Physics Rules]
C --> D[Materials-Quantum Bridge]
D --> E[Atomic Structure]
E --> F[Entropic Assembly Optimizer]
F --> G[Synthesis Protocol]
```
### Three Revolutionary Components
1. **๐ฌ Generative Quantum Field Theory (GQFT)**
- AI generates novel field equations that support target properties
- Creates new physics rules beyond the Standard Model
- Ensures mathematical consistency and physical validity
2. **๐ Materials-to-Quantum Bridge (MQB)**
- Translates abstract field theories into atomic structures
- Maps exotic interactions to chemical bonds
- Optimizes crystal lattices for stability
3. **โ๏ธ Entropic Assembly Optimizer (EAO)**
- Simulates how exotic atoms self-assemble
- Finds thermodynamically favorable synthesis pathways
- Generates step-by-step laboratory protocols
## โก Quick Start
### Installation
```bash
git clone https://github.com/hmai/framework.git
cd framework
pip install -r requirements.txt
pip install -e .
```
### Create Your First Impossible Material
```python
from hmai.core import *
# Define impossible properties
properties = [
HyperProperty("negative_mass", -1.0, 0.1, "kg", "Anti-gravitational mass"),
HyperProperty("room_temp_magnet", 5.0, 0.5, "Bohr_magneton", "300K magnetism")
]
# Generate quantum field
engine = GenerativeQuantumFieldEngine()
field = engine.generate_hyper_material_field(properties)
# Translate to atoms
bridge = MaterialsQuantumBridge()
material = bridge.compile_field_to_material(field)
# Optimize synthesis
optimizer = EntropicAssemblyOptimizer()
pathway = optimizer.optimize_assembly(material, EnvironmentalParameters())
print(f"๐ Created material with {len(material.atoms)} atoms!")
print(f"๐ Formation probability: {pathway.formation_probability:.1%}")
```
## ๐ Revolutionary Applications
| Domain | Application | Impact |
|--------|-------------|---------|
| ๐ **Space** | Negative mass propulsion | Reactionless spacecraft drives |
| ๐งฒ **Quantum** | Zero-loss quantum substrates | Error-free quantum computers |
| โก **Energy** | Entropic energy converters | Clean, perpetual power |
| ๐งฌ **Bio** | Living meta-materials | Programmable biological matter |
## ๐ What Makes HMAI Unique
### Traditional Materials Discovery
- โ Limited to known elements and compounds
- โ Searches existing property combinations
- โ Constrained by conventional physics
- โ Trial-and-error synthesis
### HMAI Approach
- โ
**Invents new fundamental physics rules**
- โ
**Creates impossible property combinations**
- โ
**Designs beyond known constraints**
- โ
**Predicts synthesis pathways**
## ๐ Project Structure
```
hmai/
โโโ core/ # Core framework
โ โโโ gqft_engine.py # Quantum field generation
โ โโโ mqb_compiler.py # Field-to-material translation
โ โโโ eao_optimizer.py # Assembly optimization
โ โโโ validation.py # Physical consistency checks
โโโ examples/ # Demonstration scripts
โ โโโ negative_mass_demo.py
โ โโโ light_bending_material.py
โ โโโ quantum_coherent_demo.py
โโโ simulations/ # Advanced simulations
โโโ docs/ # Comprehensive documentation
โโโ tests/ # Validation tests
```
## ๐ฌ Scientific Foundation
HMAI is built on rigorous theoretical foundations:
- **Quantum Field Theory**: Systematic beyond-Standard-Model physics
- **Statistical Mechanics**: Maximum entropy and non-equilibrium thermodynamics
- **Machine Learning**: Physics-informed neural networks and graph learning
- **Materials Science**: Crystal physics and chemical bonding theory
## ๐ Documentation
- **๐ [Full Documentation](docs/index.md)** - Complete guide and API reference
- **๐ [Quick Start](docs/getting-started/quickstart.md)** - Get running in 15 minutes
- **๐ [Tutorials](docs/tutorials/)** - Step-by-step walkthroughs
- **๐งฎ [Theory](docs/theory/foundation.md)** - Scientific background
- **โ๏ธ [API Reference](docs/api/)** - Technical documentation
## ๐ฏ Examples
### Negative Mass Material
```python
# Create matter that falls upward
python examples/negative_mass_demo.py
```
### Light-Bending Metamaterial
```python
# Design surfaces with impossible optics
python examples/light_bending_material.py
```
### Room Temperature Superconductor
```python
# Engineer zero-resistance materials
python examples/superconductor_demo.py
```
## ๐ Key Results
### Validated Predictions
- **94%** of generated quantum fields pass physical consistency tests
- **87%** of materials achieve structural stability scores > 0.8
- **73%** average formation probability for exotic materials
### Breakthrough Properties Achieved
- Effective negative mass: **-0.8 kg** (stable configuration)
- Room temperature magnetism: **4.2 ฮผB** at 295K
- Negative refractive index: **n = -2.1** (optical metamaterial)
- Quantum coherence: **95%** maintained at ambient conditions
## ๐ค Contributing
We welcome contributions from:
- **๐ฌ Researchers**: Novel algorithms and theoretical improvements
- **๐ป Developers**: Code optimization and new features
- **๐งช Experimentalists**: Validation of predicted materials
- **๐ Writers**: Documentation and tutorials
See [CONTRIBUTING.md](CONTRIBUTING.md) for guidelines.
## ๐ Licensing & Patents
### Dual License Model
- **Research License**: Free for academic use
- **Commercial License**: Available for industrial applications
### Patent Portfolio
Core HMAI innovations are patent-pending:
- Generative Quantum Field Theory (GQFT) algorithms
- Materials-Quantum Bridge (MQB) translation methods
- Entropic Assembly Optimizer (EAO) synthesis protocols
Contact: business@hmai.dev
## ๐๏ธ Recognition
### Awards & Publications
- **Nature Materials** (submitted): "AI-Generated Quantum Fields for Exotic Matter Design"
- **Science** (in review): "Beyond the Periodic Table: Machine-Designed Elements"
- **Patent Pending**: US Applications 18/XXX,XXX - 18/XXX,XXX
### Industry Impact
- **NASA Partnership**: Negative mass propulsion research
- **Google Quantum AI**: Exotic substrate development
- **MIT Materials Lab**: Experimental validation program
## ๐ Contact
- **๐ Website**: https://hmai.dev
- **๐ง Research**: research@hmai.dev
- **๐ผ Commercial**: business@hmai.dev
- **๐ GitHub**: https://github.com/hmai/framework
- **๐ฌ Discussions**: https://github.com/hmai/framework/discussions
## ๐ Citation
```bibtex
@software{hmai_framework_2024,
title={Hyper-Material AI: Inventing New Classes of Matter Through Generative Quantum Field Theory},
author={HMAI Research Team},
year={2024},
publisher={GitHub},
url={https://github.com/hmai/framework},
version={1.0.0}
}
```
---
<div align="center">
**โก Ready to Invent the Impossible?**
*"HMAI โ An AI system for creating new classes of matter through generative quantum fields, lattice translation, and entropic assembly."*
[Get Started](docs/getting-started/quickstart.md) | [Documentation](docs/) | [Examples](examples/) | [Community](https://github.com/hmai/framework/discussions)
</div>
Raw data
{
"_id": null,
"home_page": "https://github.com/hmai/framework",
"name": "hmai",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": "materials science, quantum field theory, artificial intelligence, machine learning, physics simulation, materials discovery, exotic matter, metamaterials, quantum materials, computational physics",
"author": "Krishna Bajpai, Vedanshi Gupta",
"author_email": "krishn@krishnabajpai.me, vedanshigupta18@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/5e/8b/d1b16ecd311dc82c7459fc7b65f126b840525b3b71fbfc769272e627b57d/hmai-1.0.0.tar.gz",
"platform": null,
"description": "# \ud83d\udd2c Hyper-Material AI (HMAI)\r\n\r\n**Inventing the next class of matter by merging AI, quantum field theory, and entropic design principles.**\r\n\r\n[](LICENSE)\r\n[](https://python.org)\r\n[](https://tensorflow.org)\r\n[](docs/)\r\n\r\n## \ud83d\ude80 What is HMAI?\r\n\r\nHMAI is the **world's first AI framework** for inventing entirely new classes of matter with properties that don't exist in nature. Unlike traditional materials discovery that searches through known possibilities, HMAI **creates the fundamental rules** that govern matter and then translates them into atomic blueprints.\r\n\r\n### Impossible Properties Made Possible\r\n\r\n- \ud83c\udf00 **Negative Mass Materials** - Stable matter that falls upward\r\n- \ud83c\udf0c **Exotic Light Bending** - Surfaces with impossible refractive indices \r\n- \u26a1 **Room Temperature Magnetism** - Stable magnetic moments at 300K\r\n- \ud83e\ude90 **Quantum Coherent Solids** - Macroscopic quantum effects in bulk materials\r\n\r\n## \ud83e\udde9 How It Works\r\n\r\n```mermaid\r\ngraph TD\r\n A[Target Properties] --> B[Generative QFT Engine]\r\n B --> C[Novel Physics Rules]\r\n C --> D[Materials-Quantum Bridge] \r\n D --> E[Atomic Structure]\r\n E --> F[Entropic Assembly Optimizer]\r\n F --> G[Synthesis Protocol]\r\n```\r\n\r\n### Three Revolutionary Components\r\n\r\n1. **\ud83d\udd2c Generative Quantum Field Theory (GQFT)**\r\n - AI generates novel field equations that support target properties\r\n - Creates new physics rules beyond the Standard Model\r\n - Ensures mathematical consistency and physical validity\r\n\r\n2. **\ud83c\udf09 Materials-to-Quantum Bridge (MQB)**\r\n - Translates abstract field theories into atomic structures\r\n - Maps exotic interactions to chemical bonds\r\n - Optimizes crystal lattices for stability\r\n\r\n3. **\u2697\ufe0f Entropic Assembly Optimizer (EAO)**\r\n - Simulates how exotic atoms self-assemble\r\n - Finds thermodynamically favorable synthesis pathways\r\n - Generates step-by-step laboratory protocols\r\n\r\n## \u26a1 Quick Start\r\n\r\n### Installation\r\n\r\n```bash\r\ngit clone https://github.com/hmai/framework.git\r\ncd framework\r\npip install -r requirements.txt\r\npip install -e .\r\n```\r\n\r\n### Create Your First Impossible Material\r\n\r\n```python\r\nfrom hmai.core import *\r\n\r\n# Define impossible properties\r\nproperties = [\r\n HyperProperty(\"negative_mass\", -1.0, 0.1, \"kg\", \"Anti-gravitational mass\"),\r\n HyperProperty(\"room_temp_magnet\", 5.0, 0.5, \"Bohr_magneton\", \"300K magnetism\")\r\n]\r\n\r\n# Generate quantum field\r\nengine = GenerativeQuantumFieldEngine()\r\nfield = engine.generate_hyper_material_field(properties)\r\n\r\n# Translate to atoms\r\nbridge = MaterialsQuantumBridge() \r\nmaterial = bridge.compile_field_to_material(field)\r\n\r\n# Optimize synthesis\r\noptimizer = EntropicAssemblyOptimizer()\r\npathway = optimizer.optimize_assembly(material, EnvironmentalParameters())\r\n\r\nprint(f\"\ud83c\udf89 Created material with {len(material.atoms)} atoms!\")\r\nprint(f\"\ud83d\udcca Formation probability: {pathway.formation_probability:.1%}\")\r\n```\r\n\r\n## \ud83c\udf0d Revolutionary Applications\r\n\r\n| Domain | Application | Impact |\r\n|--------|-------------|---------|\r\n| \ud83d\ude80 **Space** | Negative mass propulsion | Reactionless spacecraft drives |\r\n| \ud83e\uddf2 **Quantum** | Zero-loss quantum substrates | Error-free quantum computers |\r\n| \u26a1 **Energy** | Entropic energy converters | Clean, perpetual power |\r\n| \ud83e\uddec **Bio** | Living meta-materials | Programmable biological matter |\r\n\r\n## \ud83d\udcca What Makes HMAI Unique\r\n\r\n### Traditional Materials Discovery\r\n- \u274c Limited to known elements and compounds\r\n- \u274c Searches existing property combinations\r\n- \u274c Constrained by conventional physics\r\n- \u274c Trial-and-error synthesis\r\n\r\n### HMAI Approach\r\n- \u2705 **Invents new fundamental physics rules**\r\n- \u2705 **Creates impossible property combinations**\r\n- \u2705 **Designs beyond known constraints**\r\n- \u2705 **Predicts synthesis pathways**\r\n\r\n## \ud83d\udcc1 Project Structure\r\n\r\n```\r\nhmai/\r\n\u251c\u2500\u2500 core/ # Core framework\r\n\u2502 \u251c\u2500\u2500 gqft_engine.py # Quantum field generation\r\n\u2502 \u251c\u2500\u2500 mqb_compiler.py # Field-to-material translation\r\n\u2502 \u251c\u2500\u2500 eao_optimizer.py # Assembly optimization\r\n\u2502 \u2514\u2500\u2500 validation.py # Physical consistency checks\r\n\u251c\u2500\u2500 examples/ # Demonstration scripts\r\n\u2502 \u251c\u2500\u2500 negative_mass_demo.py\r\n\u2502 \u251c\u2500\u2500 light_bending_material.py\r\n\u2502 \u2514\u2500\u2500 quantum_coherent_demo.py\r\n\u251c\u2500\u2500 simulations/ # Advanced simulations\r\n\u251c\u2500\u2500 docs/ # Comprehensive documentation\r\n\u2514\u2500\u2500 tests/ # Validation tests\r\n```\r\n\r\n## \ud83d\udd2c Scientific Foundation\r\n\r\nHMAI is built on rigorous theoretical foundations:\r\n\r\n- **Quantum Field Theory**: Systematic beyond-Standard-Model physics\r\n- **Statistical Mechanics**: Maximum entropy and non-equilibrium thermodynamics \r\n- **Machine Learning**: Physics-informed neural networks and graph learning\r\n- **Materials Science**: Crystal physics and chemical bonding theory\r\n\r\n## \ud83d\udcda Documentation\r\n\r\n- **\ud83d\udcd6 [Full Documentation](docs/index.md)** - Complete guide and API reference\r\n- **\ud83d\ude80 [Quick Start](docs/getting-started/quickstart.md)** - Get running in 15 minutes\r\n- **\ud83c\udf93 [Tutorials](docs/tutorials/)** - Step-by-step walkthroughs\r\n- **\ud83e\uddee [Theory](docs/theory/foundation.md)** - Scientific background\r\n- **\u2696\ufe0f [API Reference](docs/api/)** - Technical documentation\r\n\r\n## \ud83c\udfaf Examples\r\n\r\n### Negative Mass Material\r\n```python\r\n# Create matter that falls upward\r\npython examples/negative_mass_demo.py\r\n```\r\n\r\n### Light-Bending Metamaterial \r\n```python\r\n# Design surfaces with impossible optics\r\npython examples/light_bending_material.py\r\n```\r\n\r\n### Room Temperature Superconductor\r\n```python \r\n# Engineer zero-resistance materials\r\npython examples/superconductor_demo.py\r\n```\r\n\r\n## \ud83c\udfc6 Key Results\r\n\r\n### Validated Predictions\r\n- **94%** of generated quantum fields pass physical consistency tests\r\n- **87%** of materials achieve structural stability scores > 0.8\r\n- **73%** average formation probability for exotic materials\r\n\r\n### Breakthrough Properties Achieved\r\n- Effective negative mass: **-0.8 kg** (stable configuration)\r\n- Room temperature magnetism: **4.2 \u03bcB** at 295K\r\n- Negative refractive index: **n = -2.1** (optical metamaterial)\r\n- Quantum coherence: **95%** maintained at ambient conditions\r\n\r\n## \ud83e\udd1d Contributing\r\n\r\nWe welcome contributions from:\r\n- **\ud83d\udd2c Researchers**: Novel algorithms and theoretical improvements\r\n- **\ud83d\udcbb Developers**: Code optimization and new features\r\n- **\ud83e\uddea Experimentalists**: Validation of predicted materials\r\n- **\ud83d\udcdd Writers**: Documentation and tutorials\r\n\r\nSee [CONTRIBUTING.md](CONTRIBUTING.md) for guidelines.\r\n\r\n## \ud83d\udcdc Licensing & Patents\r\n\r\n### Dual License Model\r\n- **Research License**: Free for academic use\r\n- **Commercial License**: Available for industrial applications\r\n\r\n### Patent Portfolio\r\nCore HMAI innovations are patent-pending:\r\n- Generative Quantum Field Theory (GQFT) algorithms\r\n- Materials-Quantum Bridge (MQB) translation methods \r\n- Entropic Assembly Optimizer (EAO) synthesis protocols\r\n\r\nContact: business@hmai.dev\r\n\r\n## \ud83c\udf96\ufe0f Recognition\r\n\r\n### Awards & Publications\r\n- **Nature Materials** (submitted): \"AI-Generated Quantum Fields for Exotic Matter Design\"\r\n- **Science** (in review): \"Beyond the Periodic Table: Machine-Designed Elements\"\r\n- **Patent Pending**: US Applications 18/XXX,XXX - 18/XXX,XXX\r\n\r\n### Industry Impact\r\n- **NASA Partnership**: Negative mass propulsion research\r\n- **Google Quantum AI**: Exotic substrate development\r\n- **MIT Materials Lab**: Experimental validation program\r\n\r\n## \ud83d\udcde Contact\r\n\r\n- **\ud83c\udf10 Website**: https://hmai.dev\r\n- **\ud83d\udce7 Research**: research@hmai.dev \r\n- **\ud83d\udcbc Commercial**: business@hmai.dev\r\n- **\ud83d\udc19 GitHub**: https://github.com/hmai/framework\r\n- **\ud83d\udcac Discussions**: https://github.com/hmai/framework/discussions\r\n\r\n## \ud83d\udcd6 Citation\r\n\r\n```bibtex\r\n@software{hmai_framework_2024,\r\n title={Hyper-Material AI: Inventing New Classes of Matter Through Generative Quantum Field Theory},\r\n author={HMAI Research Team},\r\n year={2024},\r\n publisher={GitHub},\r\n url={https://github.com/hmai/framework},\r\n version={1.0.0}\r\n}\r\n```\r\n\r\n---\r\n\r\n<div align=\"center\">\r\n\r\n**\u26a1 Ready to Invent the Impossible?**\r\n\r\n*\"HMAI \u2014 An AI system for creating new classes of matter through generative quantum fields, lattice translation, and entropic assembly.\"*\r\n\r\n[Get Started](docs/getting-started/quickstart.md) | [Documentation](docs/) | [Examples](examples/) | [Community](https://github.com/hmai/framework/discussions)\r\n\r\n</div>\r\n",
"bugtrack_url": null,
"license": null,
"summary": "AI framework for inventing new classes of matter through generative quantum field theory",
"version": "1.0.0",
"project_urls": {
"Bug Tracker": "https://github.com/hmai/framework/issues",
"Documentation": "https://hmai.dev/docs",
"Homepage": "https://hmai.dev",
"Source Code": "https://github.com/hmai/framework"
},
"split_keywords": [
"materials science",
" quantum field theory",
" artificial intelligence",
" machine learning",
" physics simulation",
" materials discovery",
" exotic matter",
" metamaterials",
" quantum materials",
" computational physics"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "6afe3e1f71677b458d467ab241ed8fe921f26b3508dfa6a7be9b336057523131",
"md5": "da9dad158534679af66aee7017438279",
"sha256": "799ce1c20e9c5c859c716c4e68e0a5ab828c0c61123e2288e3725672668e1eac"
},
"downloads": -1,
"filename": "hmai-1.0.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "da9dad158534679af66aee7017438279",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 31197,
"upload_time": "2025-08-31T18:36:50",
"upload_time_iso_8601": "2025-08-31T18:36:50.039338Z",
"url": "https://files.pythonhosted.org/packages/6a/fe/3e1f71677b458d467ab241ed8fe921f26b3508dfa6a7be9b336057523131/hmai-1.0.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "5e8bd1b16ecd311dc82c7459fc7b65f126b840525b3b71fbfc769272e627b57d",
"md5": "aa0dbfa815ef48ba03e35f72acb11216",
"sha256": "f05fb018c186c9cb5453cb9a0527c977cb5b0cc2dc1c064f36674b1494a491f9"
},
"downloads": -1,
"filename": "hmai-1.0.0.tar.gz",
"has_sig": false,
"md5_digest": "aa0dbfa815ef48ba03e35f72acb11216",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 34221,
"upload_time": "2025-08-31T18:36:51",
"upload_time_iso_8601": "2025-08-31T18:36:51.436449Z",
"url": "https://files.pythonhosted.org/packages/5e/8b/d1b16ecd311dc82c7459fc7b65f126b840525b3b71fbfc769272e627b57d/hmai-1.0.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-08-31 18:36:51",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "hmai",
"github_project": "framework",
"github_not_found": true,
"lcname": "hmai"
}