Name | housing-library-5496 JSON |
Version |
0.1
JSON |
| download |
home_page | |
Summary | Sample code for coding practice |
upload_time | 2023-10-31 07:16:27 |
maintainer | |
docs_url | None |
author | |
requires_python | >=3.11 |
license | |
keywords |
housing
data training
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# mle-training
# Median housing value prediction
The housing data can be downloaded from https://raw.githubusercontent.com/ageron/handson-ml/master/. The script has codes to download the data. We have modelled the median house value on given housing data.
The following techniques have been used:
- Linear regression
- Decision Tree
- Random Forest
## Steps performed
- We prepare and clean the data. We check and impute for missing values.
- Features are generated and the variables are checked for correlation.
- Multiple sampling techinuqies are evaluated. The data set is split into train and test.
- All the above said modelling techniques are tried and evaluated. The final metric used to evaluate is mean squared error.
## Command to create Virtual Enviornemnt:
conda --version
conda create --name mle-dev biopython
conda activate mle-dev
## install the necessary librabries like numpy,pandas , matplotlib and scikit learn
conda install numpy
conda install pandas
conda install matplotlib
## To excute the script
python < scriptname.py >
python nonstandardcode.py
## Exporting the enviorment
conda export --name MLE-training >env.yml
Raw data
{
"_id": null,
"home_page": "",
"name": "housing-library-5496",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.11",
"maintainer_email": "",
"keywords": "housing,data training",
"author": "",
"author_email": "SaiVineela <saivineela.ronan@tigeranalytics.com>",
"download_url": "https://files.pythonhosted.org/packages/d2/b0/10d9e85926c70a7a2c477116b37ff1ff3eda9948f5a884ab854309712522/housing_library_5496-0.1.tar.gz",
"platform": null,
"description": "# mle-training\n# Median housing value prediction\n\nThe housing data can be downloaded from https://raw.githubusercontent.com/ageron/handson-ml/master/. The script has codes to download the data. We have modelled the median house value on given housing data. \n\nThe following techniques have been used: \n\n - Linear regression\n - Decision Tree\n - Random Forest\n\n## Steps performed\n - We prepare and clean the data. We check and impute for missing values.\n - Features are generated and the variables are checked for correlation.\n - Multiple sampling techinuqies are evaluated. The data set is split into train and test.\n - All the above said modelling techniques are tried and evaluated. The final metric used to evaluate is mean squared error.\n\n\n## Command to create Virtual Enviornemnt:\nconda --version\nconda create --name mle-dev biopython\nconda activate mle-dev\n\n## install the necessary librabries like numpy,pandas , matplotlib and scikit learn\nconda install numpy\nconda install pandas\nconda install matplotlib\n\n## To excute the script\npython < scriptname.py >\npython nonstandardcode.py\n\n## Exporting the enviorment\nconda export --name MLE-training >env.yml\n",
"bugtrack_url": null,
"license": "",
"summary": "Sample code for coding practice",
"version": "0.1",
"project_urls": {
"Homepage": "https://github.com/vineelaronanki/mle-training.git"
},
"split_keywords": [
"housing",
"data training"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "519a4694e28103a2d04ca3537e2263b5be226ee0b7200fc54e3bf9c7a38a819a",
"md5": "d04dbe7b67d37f487852cfedf2cdbf26",
"sha256": "26e61d4a69103b9badf1b0bc656d5864e56730a4c95b3321a54807a81a9acc42"
},
"downloads": -1,
"filename": "housing_library_5496-0.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "d04dbe7b67d37f487852cfedf2cdbf26",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.11",
"size": 6610,
"upload_time": "2023-10-31T07:16:25",
"upload_time_iso_8601": "2023-10-31T07:16:25.288957Z",
"url": "https://files.pythonhosted.org/packages/51/9a/4694e28103a2d04ca3537e2263b5be226ee0b7200fc54e3bf9c7a38a819a/housing_library_5496-0.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "d2b010d9e85926c70a7a2c477116b37ff1ff3eda9948f5a884ab854309712522",
"md5": "1f22cb76de1d1d8d8677c71433aebd0c",
"sha256": "56e2740b6bdd3ea3272b85803926b79f054bc09306a737947ef3365d18a198dc"
},
"downloads": -1,
"filename": "housing_library_5496-0.1.tar.gz",
"has_sig": false,
"md5_digest": "1f22cb76de1d1d8d8677c71433aebd0c",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.11",
"size": 5731,
"upload_time": "2023-10-31T07:16:27",
"upload_time_iso_8601": "2023-10-31T07:16:27.304168Z",
"url": "https://files.pythonhosted.org/packages/d2/b0/10d9e85926c70a7a2c477116b37ff1ff3eda9948f5a884ab854309712522/housing_library_5496-0.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-10-31 07:16:27",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "vineelaronanki",
"github_project": "mle-training",
"github_not_found": true,
"lcname": "housing-library-5496"
}