housing-library-5520


Namehousing-library-5520 JSON
Version 0.1 PyPI version JSON
download
home_page
SummarySample code for coding practice
upload_time2023-10-30 06:05:33
maintainer
docs_urlNone
author
requires_python>=3.11
license
keywords housing data training
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # mle-training-
# Median housing value prediction

The housing data can be downloaded from https://raw.githubusercontent.com/ageron/handson-ml/master/. The script has codes to download the data. We have modelled the median house value on given housing data. 

The following techniques have been used: 

 - Linear regression
 - Decision Tree
 - Random Forest

## Steps performed
 - We prepare and clean the data. We check and impute for missing values.
 - Features are generated and the variables are checked for correlation.
 - Multiple sampling techinuqies are evaluated. The data set is split into train and test.
 - All the above said modelling techniques are tried and evaluated. The final metric used to evaluate is mean squared error.

## To excute the script
python < scriptname.py >
## Command to create Virtual Enviornemnt:
conda --version
conda create --name mle-dev biopython
conda activate mle-dev

## install the necessary librabries like numpy,pandas , matplotlib and scikit learn
conda install numpy
conda install pandas
conda install matplotlib

## To excute the script
python < scriptname.py >
python nonstandardcode.py

## Exporting the enviorment
conda export --name MLE-training >env.yml

            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "housing-library-5520",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.11",
    "maintainer_email": "",
    "keywords": "housing,data training",
    "author": "",
    "author_email": "narasamma <narasamma.godava@tigeranalutics.com>",
    "download_url": "https://files.pythonhosted.org/packages/18/59/c7c6dde5f4dc695836b9007c472f84368a228fa5a63254da503986c5a5b6/housing_library_5520-0.1.tar.gz",
    "platform": null,
    "description": "# mle-training-\n# Median housing value prediction\n\nThe housing data can be downloaded from https://raw.githubusercontent.com/ageron/handson-ml/master/. The script has codes to download the data. We have modelled the median house value on given housing data. \n\nThe following techniques have been used: \n\n - Linear regression\n - Decision Tree\n - Random Forest\n\n## Steps performed\n - We prepare and clean the data. We check and impute for missing values.\n - Features are generated and the variables are checked for correlation.\n - Multiple sampling techinuqies are evaluated. The data set is split into train and test.\n - All the above said modelling techniques are tried and evaluated. The final metric used to evaluate is mean squared error.\n\n## To excute the script\npython < scriptname.py >\n## Command to create Virtual Enviornemnt:\nconda --version\nconda create --name mle-dev biopython\nconda activate mle-dev\n\n## install the necessary librabries like numpy,pandas , matplotlib and scikit learn\nconda install numpy\nconda install pandas\nconda install matplotlib\n\n## To excute the script\npython < scriptname.py >\npython nonstandardcode.py\n\n## Exporting the enviorment\nconda export --name MLE-training >env.yml\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "Sample code for coding practice",
    "version": "0.1",
    "project_urls": {
        "Homepage": "https://github.com/NarasammaGodavarti23/mle-training-"
    },
    "split_keywords": [
        "housing",
        "data training"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "e1bdb98b120e900f28a89f1b414e3c1579a54ae72d0900f5d044c20fb3065041",
                "md5": "b9aab266a3c3e1eb265c473200d5e9a9",
                "sha256": "e0b49ab35b59cfdab8d762f1a80c63c11c3be829f8be9773fe55e27a27a8f8cd"
            },
            "downloads": -1,
            "filename": "housing_library_5520-0.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "b9aab266a3c3e1eb265c473200d5e9a9",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.11",
            "size": 6440,
            "upload_time": "2023-10-30T06:05:31",
            "upload_time_iso_8601": "2023-10-30T06:05:31.622037Z",
            "url": "https://files.pythonhosted.org/packages/e1/bd/b98b120e900f28a89f1b414e3c1579a54ae72d0900f5d044c20fb3065041/housing_library_5520-0.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "1859c7c6dde5f4dc695836b9007c472f84368a228fa5a63254da503986c5a5b6",
                "md5": "0c86d89c2a2e0dfa73122ec98ef46070",
                "sha256": "21e5bd98c4d3edfc53ecee9b1b82b72c9defa3942bb4f13c8948875d17dd5abe"
            },
            "downloads": -1,
            "filename": "housing_library_5520-0.1.tar.gz",
            "has_sig": false,
            "md5_digest": "0c86d89c2a2e0dfa73122ec98ef46070",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.11",
            "size": 5532,
            "upload_time": "2023-10-30T06:05:33",
            "upload_time_iso_8601": "2023-10-30T06:05:33.290377Z",
            "url": "https://files.pythonhosted.org/packages/18/59/c7c6dde5f4dc695836b9007c472f84368a228fa5a63254da503986c5a5b6/housing_library_5520-0.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-10-30 06:05:33",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "NarasammaGodavarti23",
    "github_project": "mle-training-",
    "github_not_found": true,
    "lcname": "housing-library-5520"
}
        
Elapsed time: 2.22740s