housing-traning-5519


Namehousing-traning-5519 JSON
Version 0.1 PyPI version JSON
download
home_page
SummarySample code for coding practice
upload_time2023-10-29 12:26:45
maintainer
docs_urlNone
author
requires_python>=3.11
license
keywords housing data training
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # mle-training
# Median housing value prediction

The housing data can be downloaded from https://raw.githubusercontent.com/ageron/handson-ml/master/. The script has codes to download the data. We have modelled the median house value on given housing data. 

The following techniques have been used: 

 - Linear regression
 - Decision Tree
 - Random Forest

## Steps performed
 - We prepare and clean the data. We check and impute for missing values.
 - Features are generated and the variables are checked for correlation.
 - Multiple sampling techinuqies are evaluated. The data set is split into train and test.
 - All the above said modelling techniques are tried and evaluated. The final metric used to evaluate is mean squared error.

## To excute the script
python < scriptname.py >
## Command to create Virtual Enviornemnt:
conda --version
conda create --name mle-dev biopython
conda activate mle-dev

## install the necessary librabries like numpy,pandas , matplotlib and scikit learn
conda install numpy
conda install pandas
conda install matplotlib

## To excute the script
python < scriptname.py >
python nonstandardcode.py

## Exporting the enviorment
conda export --name MLE-training >env.yml

            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "housing-traning-5519",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.11",
    "maintainer_email": "",
    "keywords": "housing,data training",
    "author": "",
    "author_email": "Durga vamsi <durga.koliparthi@tigeranalytics.com>",
    "download_url": "https://files.pythonhosted.org/packages/53/ff/eaf8463b1e7e2c4c8339c1f27b15bc5861091372ad5ad5a4433f39f57735/housing_traning_5519-0.1.tar.gz",
    "platform": null,
    "description": "# mle-training\n# Median housing value prediction\n\nThe housing data can be downloaded from https://raw.githubusercontent.com/ageron/handson-ml/master/. The script has codes to download the data. We have modelled the median house value on given housing data. \n\nThe following techniques have been used: \n\n - Linear regression\n - Decision Tree\n - Random Forest\n\n## Steps performed\n - We prepare and clean the data. We check and impute for missing values.\n - Features are generated and the variables are checked for correlation.\n - Multiple sampling techinuqies are evaluated. The data set is split into train and test.\n - All the above said modelling techniques are tried and evaluated. The final metric used to evaluate is mean squared error.\n\n## To excute the script\npython < scriptname.py >\n## Command to create Virtual Enviornemnt:\nconda --version\nconda create --name mle-dev biopython\nconda activate mle-dev\n\n## install the necessary librabries like numpy,pandas , matplotlib and scikit learn\nconda install numpy\nconda install pandas\nconda install matplotlib\n\n## To excute the script\npython < scriptname.py >\npython nonstandardcode.py\n\n## Exporting the enviorment\nconda export --name MLE-training >env.yml\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "Sample code for coding practice",
    "version": "0.1",
    "project_urls": {
        "Homepage": "https://github.com/KDurgavamsi/mle-training"
    },
    "split_keywords": [
        "housing",
        "data training"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "898ce69c89969c4744871d0292ad1723eef0de58f658a6e2b5ede28a3010e0b2",
                "md5": "e9bff6b154a8ab6f76b9a5d24035ebcb",
                "sha256": "4fc226ecbcfeb667b62af9cd3d4d1fd78775e8baf0f87b61e498b3a8d1f0230a"
            },
            "downloads": -1,
            "filename": "housing_traning_5519-0.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "e9bff6b154a8ab6f76b9a5d24035ebcb",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.11",
            "size": 6565,
            "upload_time": "2023-10-29T12:26:43",
            "upload_time_iso_8601": "2023-10-29T12:26:43.510221Z",
            "url": "https://files.pythonhosted.org/packages/89/8c/e69c89969c4744871d0292ad1723eef0de58f658a6e2b5ede28a3010e0b2/housing_traning_5519-0.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "53ffeaf8463b1e7e2c4c8339c1f27b15bc5861091372ad5ad5a4433f39f57735",
                "md5": "8fb933e24ffe59edce3b82eb6f2ba934",
                "sha256": "3a95772e344f770ecef14d1a961d0112b13605fca9799c232d704e9e602cbe32"
            },
            "downloads": -1,
            "filename": "housing_traning_5519-0.1.tar.gz",
            "has_sig": false,
            "md5_digest": "8fb933e24ffe59edce3b82eb6f2ba934",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.11",
            "size": 5655,
            "upload_time": "2023-10-29T12:26:45",
            "upload_time_iso_8601": "2023-10-29T12:26:45.273213Z",
            "url": "https://files.pythonhosted.org/packages/53/ff/eaf8463b1e7e2c4c8339c1f27b15bc5861091372ad5ad5a4433f39f57735/housing_traning_5519-0.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-10-29 12:26:45",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "KDurgavamsi",
    "github_project": "mle-training",
    "github_not_found": true,
    "lcname": "housing-traning-5519"
}
        
Elapsed time: 1.36635s