Name | housing-traning-5519 JSON |
Version |
0.1
JSON |
| download |
home_page | |
Summary | Sample code for coding practice |
upload_time | 2023-10-29 12:26:45 |
maintainer | |
docs_url | None |
author | |
requires_python | >=3.11 |
license | |
keywords |
housing
data training
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# mle-training
# Median housing value prediction
The housing data can be downloaded from https://raw.githubusercontent.com/ageron/handson-ml/master/. The script has codes to download the data. We have modelled the median house value on given housing data.
The following techniques have been used:
- Linear regression
- Decision Tree
- Random Forest
## Steps performed
- We prepare and clean the data. We check and impute for missing values.
- Features are generated and the variables are checked for correlation.
- Multiple sampling techinuqies are evaluated. The data set is split into train and test.
- All the above said modelling techniques are tried and evaluated. The final metric used to evaluate is mean squared error.
## To excute the script
python < scriptname.py >
## Command to create Virtual Enviornemnt:
conda --version
conda create --name mle-dev biopython
conda activate mle-dev
## install the necessary librabries like numpy,pandas , matplotlib and scikit learn
conda install numpy
conda install pandas
conda install matplotlib
## To excute the script
python < scriptname.py >
python nonstandardcode.py
## Exporting the enviorment
conda export --name MLE-training >env.yml
Raw data
{
"_id": null,
"home_page": "",
"name": "housing-traning-5519",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.11",
"maintainer_email": "",
"keywords": "housing,data training",
"author": "",
"author_email": "Durga vamsi <durga.koliparthi@tigeranalytics.com>",
"download_url": "https://files.pythonhosted.org/packages/53/ff/eaf8463b1e7e2c4c8339c1f27b15bc5861091372ad5ad5a4433f39f57735/housing_traning_5519-0.1.tar.gz",
"platform": null,
"description": "# mle-training\n# Median housing value prediction\n\nThe housing data can be downloaded from https://raw.githubusercontent.com/ageron/handson-ml/master/. The script has codes to download the data. We have modelled the median house value on given housing data. \n\nThe following techniques have been used: \n\n - Linear regression\n - Decision Tree\n - Random Forest\n\n## Steps performed\n - We prepare and clean the data. We check and impute for missing values.\n - Features are generated and the variables are checked for correlation.\n - Multiple sampling techinuqies are evaluated. The data set is split into train and test.\n - All the above said modelling techniques are tried and evaluated. The final metric used to evaluate is mean squared error.\n\n## To excute the script\npython < scriptname.py >\n## Command to create Virtual Enviornemnt:\nconda --version\nconda create --name mle-dev biopython\nconda activate mle-dev\n\n## install the necessary librabries like numpy,pandas , matplotlib and scikit learn\nconda install numpy\nconda install pandas\nconda install matplotlib\n\n## To excute the script\npython < scriptname.py >\npython nonstandardcode.py\n\n## Exporting the enviorment\nconda export --name MLE-training >env.yml\n",
"bugtrack_url": null,
"license": "",
"summary": "Sample code for coding practice",
"version": "0.1",
"project_urls": {
"Homepage": "https://github.com/KDurgavamsi/mle-training"
},
"split_keywords": [
"housing",
"data training"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "898ce69c89969c4744871d0292ad1723eef0de58f658a6e2b5ede28a3010e0b2",
"md5": "e9bff6b154a8ab6f76b9a5d24035ebcb",
"sha256": "4fc226ecbcfeb667b62af9cd3d4d1fd78775e8baf0f87b61e498b3a8d1f0230a"
},
"downloads": -1,
"filename": "housing_traning_5519-0.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "e9bff6b154a8ab6f76b9a5d24035ebcb",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.11",
"size": 6565,
"upload_time": "2023-10-29T12:26:43",
"upload_time_iso_8601": "2023-10-29T12:26:43.510221Z",
"url": "https://files.pythonhosted.org/packages/89/8c/e69c89969c4744871d0292ad1723eef0de58f658a6e2b5ede28a3010e0b2/housing_traning_5519-0.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "53ffeaf8463b1e7e2c4c8339c1f27b15bc5861091372ad5ad5a4433f39f57735",
"md5": "8fb933e24ffe59edce3b82eb6f2ba934",
"sha256": "3a95772e344f770ecef14d1a961d0112b13605fca9799c232d704e9e602cbe32"
},
"downloads": -1,
"filename": "housing_traning_5519-0.1.tar.gz",
"has_sig": false,
"md5_digest": "8fb933e24ffe59edce3b82eb6f2ba934",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.11",
"size": 5655,
"upload_time": "2023-10-29T12:26:45",
"upload_time_iso_8601": "2023-10-29T12:26:45.273213Z",
"url": "https://files.pythonhosted.org/packages/53/ff/eaf8463b1e7e2c4c8339c1f27b15bc5861091372ad5ad5a4433f39f57735/housing_traning_5519-0.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-10-29 12:26:45",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "KDurgavamsi",
"github_project": "mle-training",
"github_not_found": true,
"lcname": "housing-traning-5519"
}