.. role:: bash(code)
:language: bash
.. role:: python(code)
:language: python
====================
HPCtoolkit DataFrame
====================
Operate on HPCtoolkit XML database files as pandas DataFrames.
.. image:: https://img.shields.io/pypi/v/hpctoolkit_dataframe.svg
:target: https://pypi.org/project/hpctoolkit_dataframe
:alt: package version from PyPI
.. image:: https://github.com/mbdevpl/hpctoolkit_dataframe/actions/workflows/python.yml/badge.svg?branch=main
:target: https://github.com/mbdevpl/hpctoolkit_dataframe/actions
:alt: build status from GitHub
.. image:: https://codecov.io/gh/mbdevpl/hpctoolkit_dataframe/branch/master/graph/badge.svg
:target: https://codecov.io/gh/mbdevpl/hpctoolkit_dataframe
:alt: test coverage from Codecov
.. image:: https://api.codacy.com/project/badge/Grade/fff0555067d34db08d22df30305dee1b
:target: https://app.codacy.com/gh/mbdevpl/hpctoolkit_dataframe
:alt: grade from Codacy
.. image:: https://img.shields.io/github/license/mbdevpl/hpctoolkit_dataframe.svg
:target: https://github.com/mbdevpl/hpctoolkit_dataframe/blob/v0.3.0/NOTICE
:alt: license
Database files generated by HPCtoolkit can be read by the GUI-based tools provided by developers of
HPCtoolkit. However, programmatic access and analysis of such files is troublesome.
This library provides an HPCtoolkitDataFrame object, which is essentially a pandas DataFrame
and can be queried and sliced as easily as any DataFrame. But it extends this functionality with
methods for analysis and visualisation of performance data.
.. contents::
:backlinks: none
Usage
=====
Please see `<examples.ipynb>`_ for details.
Installation
============
For simplest installation use :bash:`pip`:
.. code:: bash
pip3 install hpctoolkit_dataframe
Requirements
------------
Python version 3.8 or later.
Python libraries as specified in `requirements.txt <https://github.com/mbdevpl/hpctoolkit_dataframe/blob/v0.3.0/requirements.txt>`_.
Building and running tests additionally requires packages listed in `requirements_test.txt <https://github.com/mbdevpl/hpctoolkit_dataframe/blob/v0.3.0/requirements_test.txt>`_.
Tested on Linux, macOS and Windows.
Links
=====
- HPCtoolkit: http://hpctoolkit.org/
- `pandas.DataFrame`: https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html
Raw data
{
"_id": null,
"home_page": "https://github.com/mbdevpl/hpctoolkit_dataframe",
"name": "hpctoolkit-dataframe",
"maintainer": "Mateusz Bysiek",
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": "mateusz.bysiek@gmail.com",
"keywords": "hpc,high-performance computing,performance,profiling",
"author": "Mateusz Bysiek",
"author_email": "mateusz.bysiek@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/3d/73/5abd4c937d1e231c53274551fc1b1ee2376274b92b05268e05633600a095/hpctoolkit_dataframe-0.3.0.tar.gz",
"platform": null,
"description": ".. role:: bash(code)\n :language: bash\n\n.. role:: python(code)\n :language: python\n\n====================\nHPCtoolkit DataFrame\n====================\n\nOperate on HPCtoolkit XML database files as pandas DataFrames.\n\n.. image:: https://img.shields.io/pypi/v/hpctoolkit_dataframe.svg\n :target: https://pypi.org/project/hpctoolkit_dataframe\n :alt: package version from PyPI\n\n.. image:: https://github.com/mbdevpl/hpctoolkit_dataframe/actions/workflows/python.yml/badge.svg?branch=main\n :target: https://github.com/mbdevpl/hpctoolkit_dataframe/actions\n :alt: build status from GitHub\n\n.. image:: https://codecov.io/gh/mbdevpl/hpctoolkit_dataframe/branch/master/graph/badge.svg\n :target: https://codecov.io/gh/mbdevpl/hpctoolkit_dataframe\n :alt: test coverage from Codecov\n\n.. image:: https://api.codacy.com/project/badge/Grade/fff0555067d34db08d22df30305dee1b\n :target: https://app.codacy.com/gh/mbdevpl/hpctoolkit_dataframe\n :alt: grade from Codacy\n\n.. image:: https://img.shields.io/github/license/mbdevpl/hpctoolkit_dataframe.svg\n :target: https://github.com/mbdevpl/hpctoolkit_dataframe/blob/v0.3.0/NOTICE\n :alt: license\n\nDatabase files generated by HPCtoolkit can be read by the GUI-based tools provided by developers of\nHPCtoolkit. However, programmatic access and analysis of such files is troublesome.\n\nThis library provides an HPCtoolkitDataFrame object, which is essentially a pandas DataFrame\nand can be queried and sliced as easily as any DataFrame. But it extends this functionality with\nmethods for analysis and visualisation of performance data.\n\n.. contents::\n :backlinks: none\n\nUsage\n=====\n\nPlease see `<examples.ipynb>`_ for details.\n\nInstallation\n============\n\nFor simplest installation use :bash:`pip`:\n\n.. code:: bash\n\n pip3 install hpctoolkit_dataframe\n\nRequirements\n------------\n\nPython version 3.8 or later.\n\nPython libraries as specified in `requirements.txt <https://github.com/mbdevpl/hpctoolkit_dataframe/blob/v0.3.0/requirements.txt>`_.\n\nBuilding and running tests additionally requires packages listed in `requirements_test.txt <https://github.com/mbdevpl/hpctoolkit_dataframe/blob/v0.3.0/requirements_test.txt>`_.\n\nTested on Linux, macOS and Windows.\n\nLinks\n=====\n\n- HPCtoolkit: http://hpctoolkit.org/\n\n- `pandas.DataFrame`: https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html\n",
"bugtrack_url": null,
"license": "Apache License 2.0",
"summary": "Operate on HPCtoolkit XML database files as pandas DataFrames.",
"version": "0.3.0",
"project_urls": {
"Homepage": "https://github.com/mbdevpl/hpctoolkit_dataframe"
},
"split_keywords": [
"hpc",
"high-performance computing",
"performance",
"profiling"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "ba89866367bc825dd5d055629c65cc9e697b33a46d6d7c9494dac6c211937e78",
"md5": "603404e22828fd7a3d54bd5e8239615f",
"sha256": "9902848f53a554101797bc2b508b51dff2368886e8a0537904aff14f4f768f62"
},
"downloads": -1,
"filename": "hpctoolkit_dataframe-0.3.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "603404e22828fd7a3d54bd5e8239615f",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 13721,
"upload_time": "2024-03-02T04:40:50",
"upload_time_iso_8601": "2024-03-02T04:40:50.167275Z",
"url": "https://files.pythonhosted.org/packages/ba/89/866367bc825dd5d055629c65cc9e697b33a46d6d7c9494dac6c211937e78/hpctoolkit_dataframe-0.3.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "3d735abd4c937d1e231c53274551fc1b1ee2376274b92b05268e05633600a095",
"md5": "b101f68bee85d234dd381a9d58aa1680",
"sha256": "b9c8e683ab78aa4da638c16ffd5567c4bb6351b3b3a01b9ff1ddb586fdaf7098"
},
"downloads": -1,
"filename": "hpctoolkit_dataframe-0.3.0.tar.gz",
"has_sig": false,
"md5_digest": "b101f68bee85d234dd381a9d58aa1680",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 276473,
"upload_time": "2024-03-02T04:40:51",
"upload_time_iso_8601": "2024-03-02T04:40:51.800901Z",
"url": "https://files.pythonhosted.org/packages/3d/73/5abd4c937d1e231c53274551fc1b1ee2376274b92b05268e05633600a095/hpctoolkit_dataframe-0.3.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-03-02 04:40:51",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "mbdevpl",
"github_project": "hpctoolkit_dataframe",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [],
"lcname": "hpctoolkit-dataframe"
}