hpctoolkit-dataframe


Namehpctoolkit-dataframe JSON
Version 0.3.0 PyPI version JSON
download
home_pagehttps://github.com/mbdevpl/hpctoolkit_dataframe
SummaryOperate on HPCtoolkit XML database files as pandas DataFrames.
upload_time2024-03-02 04:40:51
maintainerMateusz Bysiek
docs_urlNone
authorMateusz Bysiek
requires_python>=3.8
licenseApache License 2.0
keywords hpc high-performance computing performance profiling
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            .. role:: bash(code)
    :language: bash

.. role:: python(code)
    :language: python

====================
HPCtoolkit DataFrame
====================

Operate on HPCtoolkit XML database files as pandas DataFrames.

.. image:: https://img.shields.io/pypi/v/hpctoolkit_dataframe.svg
    :target: https://pypi.org/project/hpctoolkit_dataframe
    :alt: package version from PyPI

.. image:: https://github.com/mbdevpl/hpctoolkit_dataframe/actions/workflows/python.yml/badge.svg?branch=main
    :target: https://github.com/mbdevpl/hpctoolkit_dataframe/actions
    :alt: build status from GitHub

.. image:: https://codecov.io/gh/mbdevpl/hpctoolkit_dataframe/branch/master/graph/badge.svg
    :target: https://codecov.io/gh/mbdevpl/hpctoolkit_dataframe
    :alt: test coverage from Codecov

.. image:: https://api.codacy.com/project/badge/Grade/fff0555067d34db08d22df30305dee1b
    :target: https://app.codacy.com/gh/mbdevpl/hpctoolkit_dataframe
    :alt: grade from Codacy

.. image:: https://img.shields.io/github/license/mbdevpl/hpctoolkit_dataframe.svg
    :target: https://github.com/mbdevpl/hpctoolkit_dataframe/blob/v0.3.0/NOTICE
    :alt: license

Database files generated by HPCtoolkit can be read by the GUI-based tools provided by developers of
HPCtoolkit. However, programmatic access and analysis of such files is troublesome.

This library provides an HPCtoolkitDataFrame object, which is essentially a pandas DataFrame
and can be queried and sliced as easily as any DataFrame. But it extends this functionality with
methods for analysis and visualisation of performance data.

.. contents::
    :backlinks: none

Usage
=====

Please see `<examples.ipynb>`_ for details.

Installation
============

For simplest installation use :bash:`pip`:

.. code:: bash

    pip3 install hpctoolkit_dataframe

Requirements
------------

Python version 3.8 or later.

Python libraries as specified in `requirements.txt <https://github.com/mbdevpl/hpctoolkit_dataframe/blob/v0.3.0/requirements.txt>`_.

Building and running tests additionally requires packages listed in `requirements_test.txt <https://github.com/mbdevpl/hpctoolkit_dataframe/blob/v0.3.0/requirements_test.txt>`_.

Tested on Linux, macOS and Windows.

Links
=====

-   HPCtoolkit: http://hpctoolkit.org/

-   `pandas.DataFrame`: https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/mbdevpl/hpctoolkit_dataframe",
    "name": "hpctoolkit-dataframe",
    "maintainer": "Mateusz Bysiek",
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": "mateusz.bysiek@gmail.com",
    "keywords": "hpc,high-performance computing,performance,profiling",
    "author": "Mateusz Bysiek",
    "author_email": "mateusz.bysiek@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/3d/73/5abd4c937d1e231c53274551fc1b1ee2376274b92b05268e05633600a095/hpctoolkit_dataframe-0.3.0.tar.gz",
    "platform": null,
    "description": ".. role:: bash(code)\n    :language: bash\n\n.. role:: python(code)\n    :language: python\n\n====================\nHPCtoolkit DataFrame\n====================\n\nOperate on HPCtoolkit XML database files as pandas DataFrames.\n\n.. image:: https://img.shields.io/pypi/v/hpctoolkit_dataframe.svg\n    :target: https://pypi.org/project/hpctoolkit_dataframe\n    :alt: package version from PyPI\n\n.. image:: https://github.com/mbdevpl/hpctoolkit_dataframe/actions/workflows/python.yml/badge.svg?branch=main\n    :target: https://github.com/mbdevpl/hpctoolkit_dataframe/actions\n    :alt: build status from GitHub\n\n.. image:: https://codecov.io/gh/mbdevpl/hpctoolkit_dataframe/branch/master/graph/badge.svg\n    :target: https://codecov.io/gh/mbdevpl/hpctoolkit_dataframe\n    :alt: test coverage from Codecov\n\n.. image:: https://api.codacy.com/project/badge/Grade/fff0555067d34db08d22df30305dee1b\n    :target: https://app.codacy.com/gh/mbdevpl/hpctoolkit_dataframe\n    :alt: grade from Codacy\n\n.. image:: https://img.shields.io/github/license/mbdevpl/hpctoolkit_dataframe.svg\n    :target: https://github.com/mbdevpl/hpctoolkit_dataframe/blob/v0.3.0/NOTICE\n    :alt: license\n\nDatabase files generated by HPCtoolkit can be read by the GUI-based tools provided by developers of\nHPCtoolkit. However, programmatic access and analysis of such files is troublesome.\n\nThis library provides an HPCtoolkitDataFrame object, which is essentially a pandas DataFrame\nand can be queried and sliced as easily as any DataFrame. But it extends this functionality with\nmethods for analysis and visualisation of performance data.\n\n.. contents::\n    :backlinks: none\n\nUsage\n=====\n\nPlease see `<examples.ipynb>`_ for details.\n\nInstallation\n============\n\nFor simplest installation use :bash:`pip`:\n\n.. code:: bash\n\n    pip3 install hpctoolkit_dataframe\n\nRequirements\n------------\n\nPython version 3.8 or later.\n\nPython libraries as specified in `requirements.txt <https://github.com/mbdevpl/hpctoolkit_dataframe/blob/v0.3.0/requirements.txt>`_.\n\nBuilding and running tests additionally requires packages listed in `requirements_test.txt <https://github.com/mbdevpl/hpctoolkit_dataframe/blob/v0.3.0/requirements_test.txt>`_.\n\nTested on Linux, macOS and Windows.\n\nLinks\n=====\n\n-   HPCtoolkit: http://hpctoolkit.org/\n\n-   `pandas.DataFrame`: https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html\n",
    "bugtrack_url": null,
    "license": "Apache License 2.0",
    "summary": "Operate on HPCtoolkit XML database files as pandas DataFrames.",
    "version": "0.3.0",
    "project_urls": {
        "Homepage": "https://github.com/mbdevpl/hpctoolkit_dataframe"
    },
    "split_keywords": [
        "hpc",
        "high-performance computing",
        "performance",
        "profiling"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "ba89866367bc825dd5d055629c65cc9e697b33a46d6d7c9494dac6c211937e78",
                "md5": "603404e22828fd7a3d54bd5e8239615f",
                "sha256": "9902848f53a554101797bc2b508b51dff2368886e8a0537904aff14f4f768f62"
            },
            "downloads": -1,
            "filename": "hpctoolkit_dataframe-0.3.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "603404e22828fd7a3d54bd5e8239615f",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 13721,
            "upload_time": "2024-03-02T04:40:50",
            "upload_time_iso_8601": "2024-03-02T04:40:50.167275Z",
            "url": "https://files.pythonhosted.org/packages/ba/89/866367bc825dd5d055629c65cc9e697b33a46d6d7c9494dac6c211937e78/hpctoolkit_dataframe-0.3.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "3d735abd4c937d1e231c53274551fc1b1ee2376274b92b05268e05633600a095",
                "md5": "b101f68bee85d234dd381a9d58aa1680",
                "sha256": "b9c8e683ab78aa4da638c16ffd5567c4bb6351b3b3a01b9ff1ddb586fdaf7098"
            },
            "downloads": -1,
            "filename": "hpctoolkit_dataframe-0.3.0.tar.gz",
            "has_sig": false,
            "md5_digest": "b101f68bee85d234dd381a9d58aa1680",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 276473,
            "upload_time": "2024-03-02T04:40:51",
            "upload_time_iso_8601": "2024-03-02T04:40:51.800901Z",
            "url": "https://files.pythonhosted.org/packages/3d/73/5abd4c937d1e231c53274551fc1b1ee2376274b92b05268e05633600a095/hpctoolkit_dataframe-0.3.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-03-02 04:40:51",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "mbdevpl",
    "github_project": "hpctoolkit_dataframe",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "lcname": "hpctoolkit-dataframe"
}
        
Elapsed time: 0.20650s