# HPFRACC - High-Performance Fractional Calculus Library
[](https://badge.fury.io/py/hpfracc)
[](https://opensource.org/licenses/MIT)
[](https://www.python.org/downloads/)
[](https://hpfracc.readthedocs.io/)
## π¨βπ» **Author & Developer**
**Davian R. Chin**
Department of Biomedical Engineering
University of Reading
Email: [d.r.chin@pgr.reading.ac.uk](mailto:d.r.chin@pgr.reading.ac.uk)
GitHub: [@dave2k77](https://github.com/dave2k77)
## π **Overview**
HPFRACC (High-Performance Fractional Calculus Library) is a comprehensive Python library that provides high-performance implementations of fractional calculus operations, advanced numerical methods, and machine learning integration with fractional derivatives.
## β¨ **Key Features**
### π¬ **Core Fractional Calculus**
- **Multiple Definitions**: Riemann-Liouville, Caputo, GrΓΌnwald-Letnikov, and more
- **High-Performance Algorithms**: Optimized implementations for speed and accuracy
- **GPU Acceleration**: CUDA support for large-scale computations
- **Advanced Methods**: Mellin transforms, fractional differential equations, and special functions
### π€ **Machine Learning Integration**
- **Multi-Backend Support**: Seamless integration with PyTorch, JAX, and NUMBA
- **Fractional Neural Networks**: Core networks with fractional calculus integration
- **Fractional Attention Mechanisms**: Multi-head attention with fractional derivatives
- **Graph Neural Networks**: Fractional GNN architectures for graph learning tasks
- **Comprehensive ML Components**: Loss functions, optimizers, and layers (in development)
### π― **Performance & Usability**
- **Cross-Platform**: Windows, macOS, and Linux support
- **Extensive Documentation**: Comprehensive guides and examples
- **Active Development**: Regular updates and improvements
- **Research-Ready**: Designed for academic and industrial applications
## ποΈ **Architecture**
### **Multi-Backend Support**
HPFRACC provides a unified interface across multiple computation backends:
- **PyTorch**: Full-featured deep learning with GPU acceleration
- **JAX**: High-performance numerical computing with automatic differentiation
- **NUMBA**: JIT compilation for CPU optimization
### **Core Components**
- **Backend Management**: Automatic detection and seamless switching between backends
- **Unified Tensor Operations**: Consistent API across all backends
- **Fractional Calculus Integration**: Built-in fractional derivatives in all ML components
## π¦ **Installation**
### **Basic Installation**
```bash
pip install hpfracc
```
### **Full Installation with ML Dependencies**
```bash
pip install hpfracc[ml]
```
### **Development Installation**
```bash
git clone https://github.com/dave2k77/hpfracc.git
cd hpfracc
pip install -e .
```
## π **Quick Start**
### **Basic Fractional Calculus**
```python
from hpfracc import FractionalOrder, riemann_liouville
# Create fractional order
alpha = FractionalOrder(0.5)
# Compute fractional derivative
result = riemann_liouville(function, t, alpha)
```
### **Multi-Backend Neural Networks**
```python
from hpfracc.ml import BackendType, FractionalNeuralNetwork
from hpfracc.core.definitions import FractionalOrder
# Create network with JAX backend
network = FractionalNeuralNetwork(
input_size=10,
hidden_sizes=[32, 16],
output_size=2,
fractional_order=FractionalOrder(0.5),
backend=BackendType.JAX
)
# Forward pass with fractional derivatives
output = network(input_data, use_fractional=True, method="RL")
```
### **Fractional Attention Mechanism**
```python
from hpfracc.ml import FractionalAttention
# Create attention with fractional calculus
attention = FractionalAttention(
d_model=64,
n_heads=8,
fractional_order=FractionalOrder(0.5),
backend=BackendType.TORCH
)
# Apply fractional attention
output = attention(input_sequence, method="RL")
```
### **Fractional Graph Neural Networks**
```python
from hpfracc.ml import FractionalGNNFactory, BackendType
from hpfracc.core.definitions import FractionalOrder
# Create GNN with fractional calculus
gnn = FractionalGNNFactory.create_model(
model_type='gcn', # Options: 'gcn', 'gat', 'sage', 'unet'
input_dim=16,
hidden_dim=32,
output_dim=4,
fractional_order=FractionalOrder(0.5),
backend=BackendType.JAX
)
# Forward pass on graph data
output = gnn(node_features, edge_index)
```
## π§ **Current Status**
### **β
Fully Working**
- **Core Fractional Calculus**: All mathematical operations and algorithms
- **Backend Management**: Seamless switching between PyTorch, JAX, and NUMBA
- **Core Neural Networks**: FractionalNeuralNetwork with multi-backend support
- **Attention Mechanisms**: FractionalAttention with fractional derivatives
- **Tensor Operations**: Unified API across all backends
- **Graph Neural Networks**: Complete GNN architectures (GCN, GAT, GraphSAGE, U-Net)
### **π§ In Development**
- **Advanced Layers**: Conv1D, Conv2D, LSTM, Transformer layers
- **Loss Functions**: Comprehensive loss function library
- **Optimizers**: Fractional gradient-based optimizers
### **π Planned Features**
- **Advanced ML Components**: Complete layer and optimizer library
- **Performance Optimization**: Backend-specific optimizations
- **Research Tools**: Benchmarking and analysis utilities
- **Extended GNN Support**: Additional graph neural network architectures and graph types
## π **Documentation**
- **User Guide**: [docs/user_guide.md](docs/user_guide.md)
- **API Reference**: [docs/api_reference.md](docs/api_reference.md)
- **Examples**: [examples/](examples/) directory
- **Development Guide**: [README_DEV.md](README_DEV.md)
## π€ **Contributing**
We welcome contributions! Please see our [Contributing Guidelines](CONTRIBUTING.md) and [Development Guide](README_DEV.md) for details.
### **Development Setup**
```bash
# Clone repository
git clone https://github.com/dave2k77/hpfracc.git
cd hpfracc
# Create virtual environment
conda create -n hpfracc_dev python=3.9
conda activate hpfracc_dev
# Install development dependencies
pip install -e .[dev]
```
## π **License**
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
## π **Acknowledgments**
- **University of Reading**: Department of Biomedical Engineering
- **Open Source Community**: Contributors and maintainers
- **Research Community**: Academic and industrial partners
## π **Contact**
- **Email**: [d.r.chin@pgr.reading.ac.uk](mailto:d.r.chin@pgr.reading.ac.uk)
- **GitHub**: [@dave2k77](https://github.com/dave2k77)
- **Project**: [HPFRACC Repository](https://github.com/dave2k77/hpfracc)
---
**HPFRACC** - Advancing fractional calculus through high-performance computing and machine learning integration.
Raw data
{
"_id": null,
"home_page": null,
"name": "hpfracc",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": "\"Davian R. Chin\" <d.r.chin@pgr.reading.ac.uk>",
"keywords": "fractional-calculus, numerical-methods, machine-learning, graph-neural-networks, jax, pytorch, numba, scientific-computing, mathematics, deep-learning",
"author": null,
"author_email": "\"Davian R. Chin\" <d.r.chin@pgr.reading.ac.uk>",
"download_url": "https://files.pythonhosted.org/packages/29/6a/88b48d7c3d44212c1c639a3ce8bb71cd2df46973fb63aebcfc9323709e72/hpfracc-1.1.2.tar.gz",
"platform": null,
"description": "# HPFRACC - High-Performance Fractional Calculus Library\r\n\r\n[](https://badge.fury.io/py/hpfracc)\r\n[](https://opensource.org/licenses/MIT)\r\n[](https://www.python.org/downloads/)\r\n[](https://hpfracc.readthedocs.io/)\r\n\r\n## \ud83d\udc68\u200d\ud83d\udcbb **Author & Developer**\r\n\r\n**Davian R. Chin** \r\nDepartment of Biomedical Engineering \r\nUniversity of Reading \r\nEmail: [d.r.chin@pgr.reading.ac.uk](mailto:d.r.chin@pgr.reading.ac.uk) \r\nGitHub: [@dave2k77](https://github.com/dave2k77)\r\n\r\n## \ud83d\ude80 **Overview**\r\n\r\nHPFRACC (High-Performance Fractional Calculus Library) is a comprehensive Python library that provides high-performance implementations of fractional calculus operations, advanced numerical methods, and machine learning integration with fractional derivatives.\r\n\r\n## \u2728 **Key Features**\r\n\r\n### \ud83d\udd2c **Core Fractional Calculus**\r\n- **Multiple Definitions**: Riemann-Liouville, Caputo, Gr\u00fcnwald-Letnikov, and more\r\n- **High-Performance Algorithms**: Optimized implementations for speed and accuracy\r\n- **GPU Acceleration**: CUDA support for large-scale computations\r\n- **Advanced Methods**: Mellin transforms, fractional differential equations, and special functions\r\n\r\n### \ud83e\udd16 **Machine Learning Integration**\r\n- **Multi-Backend Support**: Seamless integration with PyTorch, JAX, and NUMBA\r\n- **Fractional Neural Networks**: Core networks with fractional calculus integration\r\n- **Fractional Attention Mechanisms**: Multi-head attention with fractional derivatives\r\n- **Graph Neural Networks**: Fractional GNN architectures for graph learning tasks\r\n- **Comprehensive ML Components**: Loss functions, optimizers, and layers (in development)\r\n\r\n### \ud83c\udfaf **Performance & Usability**\r\n- **Cross-Platform**: Windows, macOS, and Linux support\r\n- **Extensive Documentation**: Comprehensive guides and examples\r\n- **Active Development**: Regular updates and improvements\r\n- **Research-Ready**: Designed for academic and industrial applications\r\n\r\n## \ud83c\udfd7\ufe0f **Architecture**\r\n\r\n### **Multi-Backend Support**\r\nHPFRACC provides a unified interface across multiple computation backends:\r\n\r\n- **PyTorch**: Full-featured deep learning with GPU acceleration\r\n- **JAX**: High-performance numerical computing with automatic differentiation\r\n- **NUMBA**: JIT compilation for CPU optimization\r\n\r\n### **Core Components**\r\n- **Backend Management**: Automatic detection and seamless switching between backends\r\n- **Unified Tensor Operations**: Consistent API across all backends\r\n- **Fractional Calculus Integration**: Built-in fractional derivatives in all ML components\r\n\r\n## \ud83d\udce6 **Installation**\r\n\r\n### **Basic Installation**\r\n```bash\r\npip install hpfracc\r\n```\r\n\r\n### **Full Installation with ML Dependencies**\r\n```bash\r\npip install hpfracc[ml]\r\n```\r\n\r\n### **Development Installation**\r\n```bash\r\ngit clone https://github.com/dave2k77/hpfracc.git\r\ncd hpfracc\r\npip install -e .\r\n```\r\n\r\n## \ud83d\ude80 **Quick Start**\r\n\r\n### **Basic Fractional Calculus**\r\n```python\r\nfrom hpfracc import FractionalOrder, riemann_liouville\r\n\r\n# Create fractional order\r\nalpha = FractionalOrder(0.5)\r\n\r\n# Compute fractional derivative\r\nresult = riemann_liouville(function, t, alpha)\r\n```\r\n\r\n### **Multi-Backend Neural Networks**\r\n```python\r\nfrom hpfracc.ml import BackendType, FractionalNeuralNetwork\r\nfrom hpfracc.core.definitions import FractionalOrder\r\n\r\n# Create network with JAX backend\r\nnetwork = FractionalNeuralNetwork(\r\n input_size=10,\r\n hidden_sizes=[32, 16],\r\n output_size=2,\r\n fractional_order=FractionalOrder(0.5),\r\n backend=BackendType.JAX\r\n)\r\n\r\n# Forward pass with fractional derivatives\r\noutput = network(input_data, use_fractional=True, method=\"RL\")\r\n```\r\n\r\n### **Fractional Attention Mechanism**\r\n```python\r\nfrom hpfracc.ml import FractionalAttention\r\n\r\n# Create attention with fractional calculus\r\nattention = FractionalAttention(\r\n d_model=64,\r\n n_heads=8,\r\n fractional_order=FractionalOrder(0.5),\r\n backend=BackendType.TORCH\r\n)\r\n\r\n# Apply fractional attention\r\noutput = attention(input_sequence, method=\"RL\")\r\n```\r\n\r\n### **Fractional Graph Neural Networks**\r\n```python\r\nfrom hpfracc.ml import FractionalGNNFactory, BackendType\r\nfrom hpfracc.core.definitions import FractionalOrder\r\n\r\n# Create GNN with fractional calculus\r\ngnn = FractionalGNNFactory.create_model(\r\n model_type='gcn', # Options: 'gcn', 'gat', 'sage', 'unet'\r\n input_dim=16,\r\n hidden_dim=32,\r\n output_dim=4,\r\n fractional_order=FractionalOrder(0.5),\r\n backend=BackendType.JAX\r\n)\r\n\r\n# Forward pass on graph data\r\noutput = gnn(node_features, edge_index)\r\n```\r\n\r\n## \ud83d\udd27 **Current Status**\r\n\r\n### **\u2705 Fully Working**\r\n- **Core Fractional Calculus**: All mathematical operations and algorithms\r\n- **Backend Management**: Seamless switching between PyTorch, JAX, and NUMBA\r\n- **Core Neural Networks**: FractionalNeuralNetwork with multi-backend support\r\n- **Attention Mechanisms**: FractionalAttention with fractional derivatives\r\n- **Tensor Operations**: Unified API across all backends\r\n- **Graph Neural Networks**: Complete GNN architectures (GCN, GAT, GraphSAGE, U-Net)\r\n\r\n### **\ud83d\udea7 In Development**\r\n- **Advanced Layers**: Conv1D, Conv2D, LSTM, Transformer layers\r\n- **Loss Functions**: Comprehensive loss function library\r\n- **Optimizers**: Fractional gradient-based optimizers\r\n\r\n### **\ud83d\udccb Planned Features**\r\n- **Advanced ML Components**: Complete layer and optimizer library\r\n- **Performance Optimization**: Backend-specific optimizations\r\n- **Research Tools**: Benchmarking and analysis utilities\r\n- **Extended GNN Support**: Additional graph neural network architectures and graph types\r\n\r\n## \ud83d\udcda **Documentation**\r\n\r\n- **User Guide**: [docs/user_guide.md](docs/user_guide.md)\r\n- **API Reference**: [docs/api_reference.md](docs/api_reference.md)\r\n- **Examples**: [examples/](examples/) directory\r\n- **Development Guide**: [README_DEV.md](README_DEV.md)\r\n\r\n## \ud83e\udd1d **Contributing**\r\n\r\nWe welcome contributions! Please see our [Contributing Guidelines](CONTRIBUTING.md) and [Development Guide](README_DEV.md) for details.\r\n\r\n### **Development Setup**\r\n```bash\r\n# Clone repository\r\ngit clone https://github.com/dave2k77/hpfracc.git\r\ncd hpfracc\r\n\r\n# Create virtual environment\r\nconda create -n hpfracc_dev python=3.9\r\nconda activate hpfracc_dev\r\n\r\n# Install development dependencies\r\npip install -e .[dev]\r\n```\r\n\r\n## \ud83d\udcc4 **License**\r\n\r\nThis project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.\r\n\r\n## \ud83d\ude4f **Acknowledgments**\r\n\r\n- **University of Reading**: Department of Biomedical Engineering\r\n- **Open Source Community**: Contributors and maintainers\r\n- **Research Community**: Academic and industrial partners\r\n\r\n## \ud83d\udcde **Contact**\r\n\r\n- **Email**: [d.r.chin@pgr.reading.ac.uk](mailto:d.r.chin@pgr.reading.ac.uk)\r\n- **GitHub**: [@dave2k77](https://github.com/dave2k77)\r\n- **Project**: [HPFRACC Repository](https://github.com/dave2k77/hpfracc)\r\n\r\n---\r\n\r\n**HPFRACC** - Advancing fractional calculus through high-performance computing and machine learning integration.\r\n",
"bugtrack_url": null,
"license": null,
"summary": "High-Performance Fractional Calculus Library with Machine Learning Integration and Graph Neural Networks",
"version": "1.1.2",
"project_urls": {
"Bug Tracker": "https://github.com/dave2k77/fractional_calculus_library/issues",
"Documentation": "https://fractional-calculus-library.readthedocs.io",
"Homepage": "https://github.com/dave2k77/fractional_calculus_library",
"Repository": "https://github.com/dave2k77/fractional_calculus_library.git"
},
"split_keywords": [
"fractional-calculus",
" numerical-methods",
" machine-learning",
" graph-neural-networks",
" jax",
" pytorch",
" numba",
" scientific-computing",
" mathematics",
" deep-learning"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "e3d55b6821481001fa580aee86ff7cca5e261c45d43f8ec53fc4a9b6e149d4bb",
"md5": "3c90551367343111cdd6653ebb7e2c34",
"sha256": "342e902405dd740528c27636298d6a1df4f9ae30f63d30bde41e0a9ffeb66909"
},
"downloads": -1,
"filename": "hpfracc-1.1.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "3c90551367343111cdd6653ebb7e2c34",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 185192,
"upload_time": "2025-08-25T04:30:57",
"upload_time_iso_8601": "2025-08-25T04:30:57.566928Z",
"url": "https://files.pythonhosted.org/packages/e3/d5/5b6821481001fa580aee86ff7cca5e261c45d43f8ec53fc4a9b6e149d4bb/hpfracc-1.1.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "296a88b48d7c3d44212c1c639a3ce8bb71cd2df46973fb63aebcfc9323709e72",
"md5": "491ae2ed2059f3e9b0ddcb852b6be4b9",
"sha256": "aab2cdea1bcc26b47d11c96147aa3c5bafcc05ceac6e3e063e50e618d6a1549b"
},
"downloads": -1,
"filename": "hpfracc-1.1.2.tar.gz",
"has_sig": false,
"md5_digest": "491ae2ed2059f3e9b0ddcb852b6be4b9",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 170172,
"upload_time": "2025-08-25T04:30:59",
"upload_time_iso_8601": "2025-08-25T04:30:59.170862Z",
"url": "https://files.pythonhosted.org/packages/29/6a/88b48d7c3d44212c1c639a3ce8bb71cd2df46973fb63aebcfc9323709e72/hpfracc-1.1.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-08-25 04:30:59",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "dave2k77",
"github_project": "fractional_calculus_library",
"github_not_found": true,
"lcname": "hpfracc"
}