hudi


Namehudi JSON
Version 0.3.0 PyPI version JSON
download
home_pagehttps://github.com/apache/hudi-rs
SummaryNative Python binding for Apache Hudi, based on hudi-rs.
upload_time2025-02-02 17:05:27
maintainerNone
docs_urlNone
authorNone
requires_python>=3.9
licenseApache License 2.0
keywords apachehudi hudi datalake arrow
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <!--
  ~ Licensed to the Apache Software Foundation (ASF) under one
  ~ or more contributor license agreements.  See the NOTICE file
  ~ distributed with this work for additional information
  ~ regarding copyright ownership.  The ASF licenses this file
  ~ to you under the Apache License, Version 2.0 (the
  ~ "License"); you may not use this file except in compliance
  ~ with the License.  You may obtain a copy of the License at
  ~
  ~   http://www.apache.org/licenses/LICENSE-2.0
  ~
  ~ Unless required by applicable law or agreed to in writing,
  ~ software distributed under the License is distributed on an
  ~ "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
  ~ KIND, either express or implied.  See the License for the
  ~ specific language governing permissions and limitations
  ~ under the License.
-->

<p align="center">
  <a href="https://hudi.apache.org/">
    <img src="https://hudi.apache.org/assets/images/hudi_logo_transparent_1400x600.png" alt="Hudi logo" height="120px">
  </a>
</p>
<p align="center">
  The native Rust implementation for Apache Hudi, with Python API bindings.
  <br>
  <br>
  <a href="https://github.com/apache/hudi-rs/actions/workflows/ci.yml">
    <img alt="hudi-rs ci" src="https://github.com/apache/hudi-rs/actions/workflows/ci.yml/badge.svg">
  </a>
  <a href="https://codecov.io/github/apache/hudi-rs">
    <img alt="hudi-rs codecov" src="https://codecov.io/github/apache/hudi-rs/graph/badge.svg">
  </a>
  <a href="https://join.slack.com/t/apache-hudi/shared_invite/zt-2ggm1fub8-_yt4Reu9djwqqVRFC7X49g">
    <img alt="join hudi slack" src="https://img.shields.io/badge/slack-%23hudi-72eff8?logo=slack&color=48c628">
  </a>
  <a href="https://x.com/apachehudi">
    <img alt="follow hudi x/twitter" src="https://img.shields.io/twitter/follow/apachehudi?label=apachehudi">
  </a>
  <a href="https://www.linkedin.com/company/apache-hudi">
    <img alt="follow hudi linkedin" src="https://img.shields.io/badge/apache%E2%80%93hudi-0077B5?logo=linkedin">
  </a>
</p>

The `hudi-rs` project aims to broaden the use of [Apache Hudi](https://github.com/apache/hudi) for a diverse range of
users and projects.

| Source        | Installation Command |
|---------------|----------------------|
| **PyPi**      | `pip install hudi`   |
| **Crates.io** | `cargo add hudi`     |

## Usage Examples

> [!NOTE]
> These examples expect a Hudi table exists at `/tmp/trips_table`, created using
> the [quick start guide](https://hudi.apache.org/docs/quick-start-guide).

### Snapshot Query

Snapshot query reads the latest version of the data from the table. The table API also accepts partition filters.

#### Python

```python
from hudi import HudiTableBuilder
import pyarrow as pa

hudi_table = HudiTableBuilder.from_base_uri("/tmp/trips_table").build()
batches = hudi_table.read_snapshot(filters=[("city", "=", "san_francisco")])

# convert to PyArrow table
arrow_table = pa.Table.from_batches(batches)
result = arrow_table.select(["rider", "city", "ts", "fare"])
print(result)
```

#### Rust

```rust
use hudi::error::Result;
use hudi::table::builder::TableBuilder as HudiTableBuilder;
use arrow::compute::concat_batches;

#[tokio::main]
async fn main() -> Result<()> {
    let hudi_table = HudiTableBuilder::from_base_uri("/tmp/trips_table").build().await?;
    let batches = hudi_table.read_snapshot(&[("city", "=", "san_francisco")]).await?;
    let batch = concat_batches(&batches[0].schema(), &batches)?;
    let columns = vec!["rider", "city", "ts", "fare"];
    for col_name in columns {
        let idx = batch.schema().index_of(col_name).unwrap();
        println!("{}: {}", col_name, batch.column(idx));
    }
    Ok(())
}
```

To run read-optimized (RO) query on Merge-on-Read (MOR) tables, set `hoodie.read.use.read_optimized.mode` when creating the table.

#### Python

```python
hudi_table = (
    HudiTableBuilder
    .from_base_uri("/tmp/trips_table")
    .with_option("hoodie.read.use.read_optimized.mode", "true")
    .build()
)
```

#### Rust

```rust
let hudi_table = 
    HudiTableBuilder::from_base_uri("/tmp/trips_table")
    .with_option("hoodie.read.use.read_optimized.mode", "true")
    .build().await?;
```

> [!NOTE]
> Currently reading MOR tables is limited to tables with Parquet data blocks.

### Time-Travel Query

Time-travel query reads the data at a specific timestamp from the table. The table API also accepts partition filters.

#### Python

```python
batches = (
    hudi_table
    .read_snapshot_as_of("20241231123456789", filters=[("city", "=", "san_francisco")])
)
```

#### Rust

```rust
let batches = 
    hudi_table
    .read_snapshot_as_of("20241231123456789", &[("city", "=", "san_francisco")]).await?;
```

### Incremental Query

Incremental query reads the changed data from the table for a given time range.

#### Python

```python
# read the records between t1 (exclusive) and t2 (inclusive)
batches = hudi_table.read_incremental_records(t1, t2)

# read the records after t1
batches = hudi_table.read_incremental_records(t1)
```

#### Rust

```rust
// read the records between t1 (exclusive) and t2 (inclusive)
let batches = hudi_table.read_incremental_records(t1, Some(t2)).await?;

// read the records after t1
let batches = hudi_table.read_incremental_records(t1, None).await?;
```

> [!NOTE]
> Currently the only supported format for the timestamp arguments is Hudi Timeline format: `yyyyMMddHHmmssSSS` or `yyyyMMddHHmmss`.

## Query Engine Integration

Hudi-rs provides APIs to support integration with query engines. The sections below highlight some commonly used APIs.

### Table API

Create a Hudi table instance using its constructor or the `TableBuilder` API.

| Stage           | API                                       | Description                                                                    |
|-----------------|-------------------------------------------|--------------------------------------------------------------------------------|
| Query planning  | `get_file_slices()`                       | For snapshot query, get a list of file slices.                                 |
|                 | `get_file_slices_splits()`                | For snapshot query, get a list of file slices in splits.                       |
|                 | `get_file_slices_as_of()`                 | For time-travel query, get a list of file slices at a given time.              |
|                 | `get_file_slices_splits_as_of()`          | For time-travel query, get a list of file slices in splits at a given time.    |
|                 | `get_file_slices_between()`               | For incremental query, get a list of changed file slices between a time range. |
| Query execution | `create_file_group_reader_with_options()` | Create a file group reader instance with the table instance's configs.         |

### File Group API

Create a Hudi file group reader instance using its constructor or the Hudi table API `create_file_group_reader_with_options()`.

| Stage           | API                                   | Description                                                                                                                                                                        |
|-----------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Query execution | `read_file_slice()`                   | Read records from a given file slice; based on the configs, read records from only base file, or from base file and log files, and merge records based on the configured strategy. |


### Apache DataFusion

Enabling the `hudi` crate with `datafusion` feature will provide a [DataFusion](https://datafusion.apache.org/) 
extension to query Hudi tables.

<details>
<summary>Add crate hudi with datafusion feature to your application to query a Hudi table.</summary>

```shell
cargo new my_project --bin && cd my_project
cargo add tokio@1 datafusion@43
cargo add hudi --features datafusion
```

Update `src/main.rs` with the code snippet below then `cargo run`.

</details>

```rust
use std::sync::Arc;

use datafusion::error::Result;
use datafusion::prelude::{DataFrame, SessionContext};
use hudi::HudiDataSource;

#[tokio::main]
async fn main() -> Result<()> {
    let ctx = SessionContext::new();
    let hudi = HudiDataSource::new_with_options(
        "/tmp/trips_table",
        [("hoodie.read.input.partitions", "5")]).await?;
    ctx.register_table("trips_table", Arc::new(hudi))?;
    let df: DataFrame = ctx.sql("SELECT * from trips_table where city = 'san_francisco'").await?;
    df.show().await?;
    Ok(())
}
```

### Other Integrations

Hudi is also integrated with

- [Daft](https://www.getdaft.io/projects/docs/en/stable/user_guide/integrations/hudi.html)
- [Ray](https://docs.ray.io/en/latest/data/api/doc/ray.data.read_hudi.html#ray.data.read_hudi)

### Work with cloud storage

Ensure cloud storage credentials are set properly as environment variables, e.g., `AWS_*`, `AZURE_*`, or `GOOGLE_*`.
Relevant storage environment variables will then be picked up. The target table's base uri with schemes such
as `s3://`, `az://`, or `gs://` will be processed accordingly.

Alternatively, you can pass the storage configuration as options via Table APIs.

#### Python

```python
from hudi import HudiTableBuilder

hudi_table = (
    HudiTableBuilder
    .from_base_uri("s3://bucket/trips_table")
    .with_option("aws_region", "us-west-2")
    .build()
)
```

#### Rust

```rust
use hudi::table::builder::TableBuilder as HudiTableBuilder;

async fn main() -> Result<()> {
    let hudi_table = 
        HudiTableBuilder::from_base_uri("s3://bucket/trips_table")
        .with_option("aws_region", "us-west-2")
        .build().await?;
}
```

## Contributing

Check out the [contributing guide](./CONTRIBUTING.md) for all the details about making contributions to the project.


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/apache/hudi-rs",
    "name": "hudi",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": null,
    "keywords": "apachehudi, hudi, datalake, arrow",
    "author": null,
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/89/12/dea14552cc792c9caa67834658f569fcec07f1343f5f1e84aa573dec943f/hudi-0.3.0.tar.gz",
    "platform": null,
    "description": "<!--\n  ~ Licensed to the Apache Software Foundation (ASF) under one\n  ~ or more contributor license agreements.  See the NOTICE file\n  ~ distributed with this work for additional information\n  ~ regarding copyright ownership.  The ASF licenses this file\n  ~ to you under the Apache License, Version 2.0 (the\n  ~ \"License\"); you may not use this file except in compliance\n  ~ with the License.  You may obtain a copy of the License at\n  ~\n  ~   http://www.apache.org/licenses/LICENSE-2.0\n  ~\n  ~ Unless required by applicable law or agreed to in writing,\n  ~ software distributed under the License is distributed on an\n  ~ \"AS IS\" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY\n  ~ KIND, either express or implied.  See the License for the\n  ~ specific language governing permissions and limitations\n  ~ under the License.\n-->\n\n<p align=\"center\">\n  <a href=\"https://hudi.apache.org/\">\n    <img src=\"https://hudi.apache.org/assets/images/hudi_logo_transparent_1400x600.png\" alt=\"Hudi logo\" height=\"120px\">\n  </a>\n</p>\n<p align=\"center\">\n  The native Rust implementation for Apache Hudi, with Python API bindings.\n  <br>\n  <br>\n  <a href=\"https://github.com/apache/hudi-rs/actions/workflows/ci.yml\">\n    <img alt=\"hudi-rs ci\" src=\"https://github.com/apache/hudi-rs/actions/workflows/ci.yml/badge.svg\">\n  </a>\n  <a href=\"https://codecov.io/github/apache/hudi-rs\">\n    <img alt=\"hudi-rs codecov\" src=\"https://codecov.io/github/apache/hudi-rs/graph/badge.svg\">\n  </a>\n  <a href=\"https://join.slack.com/t/apache-hudi/shared_invite/zt-2ggm1fub8-_yt4Reu9djwqqVRFC7X49g\">\n    <img alt=\"join hudi slack\" src=\"https://img.shields.io/badge/slack-%23hudi-72eff8?logo=slack&color=48c628\">\n  </a>\n  <a href=\"https://x.com/apachehudi\">\n    <img alt=\"follow hudi x/twitter\" src=\"https://img.shields.io/twitter/follow/apachehudi?label=apachehudi\">\n  </a>\n  <a href=\"https://www.linkedin.com/company/apache-hudi\">\n    <img alt=\"follow hudi linkedin\" src=\"https://img.shields.io/badge/apache%E2%80%93hudi-0077B5?logo=linkedin\">\n  </a>\n</p>\n\nThe `hudi-rs` project aims to broaden the use of [Apache Hudi](https://github.com/apache/hudi) for a diverse range of\nusers and projects.\n\n| Source        | Installation Command |\n|---------------|----------------------|\n| **PyPi**      | `pip install hudi`   |\n| **Crates.io** | `cargo add hudi`     |\n\n## Usage Examples\n\n> [!NOTE]\n> These examples expect a Hudi table exists at `/tmp/trips_table`, created using\n> the [quick start guide](https://hudi.apache.org/docs/quick-start-guide).\n\n### Snapshot Query\n\nSnapshot query reads the latest version of the data from the table. The table API also accepts partition filters.\n\n#### Python\n\n```python\nfrom hudi import HudiTableBuilder\nimport pyarrow as pa\n\nhudi_table = HudiTableBuilder.from_base_uri(\"/tmp/trips_table\").build()\nbatches = hudi_table.read_snapshot(filters=[(\"city\", \"=\", \"san_francisco\")])\n\n# convert to PyArrow table\narrow_table = pa.Table.from_batches(batches)\nresult = arrow_table.select([\"rider\", \"city\", \"ts\", \"fare\"])\nprint(result)\n```\n\n#### Rust\n\n```rust\nuse hudi::error::Result;\nuse hudi::table::builder::TableBuilder as HudiTableBuilder;\nuse arrow::compute::concat_batches;\n\n#[tokio::main]\nasync fn main() -> Result<()> {\n    let hudi_table = HudiTableBuilder::from_base_uri(\"/tmp/trips_table\").build().await?;\n    let batches = hudi_table.read_snapshot(&[(\"city\", \"=\", \"san_francisco\")]).await?;\n    let batch = concat_batches(&batches[0].schema(), &batches)?;\n    let columns = vec![\"rider\", \"city\", \"ts\", \"fare\"];\n    for col_name in columns {\n        let idx = batch.schema().index_of(col_name).unwrap();\n        println!(\"{}: {}\", col_name, batch.column(idx));\n    }\n    Ok(())\n}\n```\n\nTo run read-optimized (RO) query on Merge-on-Read (MOR) tables, set `hoodie.read.use.read_optimized.mode` when creating the table.\n\n#### Python\n\n```python\nhudi_table = (\n    HudiTableBuilder\n    .from_base_uri(\"/tmp/trips_table\")\n    .with_option(\"hoodie.read.use.read_optimized.mode\", \"true\")\n    .build()\n)\n```\n\n#### Rust\n\n```rust\nlet hudi_table = \n    HudiTableBuilder::from_base_uri(\"/tmp/trips_table\")\n    .with_option(\"hoodie.read.use.read_optimized.mode\", \"true\")\n    .build().await?;\n```\n\n> [!NOTE]\n> Currently reading MOR tables is limited to tables with Parquet data blocks.\n\n### Time-Travel Query\n\nTime-travel query reads the data at a specific timestamp from the table. The table API also accepts partition filters.\n\n#### Python\n\n```python\nbatches = (\n    hudi_table\n    .read_snapshot_as_of(\"20241231123456789\", filters=[(\"city\", \"=\", \"san_francisco\")])\n)\n```\n\n#### Rust\n\n```rust\nlet batches = \n    hudi_table\n    .read_snapshot_as_of(\"20241231123456789\", &[(\"city\", \"=\", \"san_francisco\")]).await?;\n```\n\n### Incremental Query\n\nIncremental query reads the changed data from the table for a given time range.\n\n#### Python\n\n```python\n# read the records between t1 (exclusive) and t2 (inclusive)\nbatches = hudi_table.read_incremental_records(t1, t2)\n\n# read the records after t1\nbatches = hudi_table.read_incremental_records(t1)\n```\n\n#### Rust\n\n```rust\n// read the records between t1 (exclusive) and t2 (inclusive)\nlet batches = hudi_table.read_incremental_records(t1, Some(t2)).await?;\n\n// read the records after t1\nlet batches = hudi_table.read_incremental_records(t1, None).await?;\n```\n\n> [!NOTE]\n> Currently the only supported format for the timestamp arguments is Hudi Timeline format: `yyyyMMddHHmmssSSS` or `yyyyMMddHHmmss`.\n\n## Query Engine Integration\n\nHudi-rs provides APIs to support integration with query engines. The sections below highlight some commonly used APIs.\n\n### Table API\n\nCreate a Hudi table instance using its constructor or the `TableBuilder` API.\n\n| Stage           | API                                       | Description                                                                    |\n|-----------------|-------------------------------------------|--------------------------------------------------------------------------------|\n| Query planning  | `get_file_slices()`                       | For snapshot query, get a list of file slices.                                 |\n|                 | `get_file_slices_splits()`                | For snapshot query, get a list of file slices in splits.                       |\n|                 | `get_file_slices_as_of()`                 | For time-travel query, get a list of file slices at a given time.              |\n|                 | `get_file_slices_splits_as_of()`          | For time-travel query, get a list of file slices in splits at a given time.    |\n|                 | `get_file_slices_between()`               | For incremental query, get a list of changed file slices between a time range. |\n| Query execution | `create_file_group_reader_with_options()` | Create a file group reader instance with the table instance's configs.         |\n\n### File Group API\n\nCreate a Hudi file group reader instance using its constructor or the Hudi table API `create_file_group_reader_with_options()`.\n\n| Stage           | API                                   | Description                                                                                                                                                                        |\n|-----------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| Query execution | `read_file_slice()`                   | Read records from a given file slice; based on the configs, read records from only base file, or from base file and log files, and merge records based on the configured strategy. |\n\n\n### Apache DataFusion\n\nEnabling the `hudi` crate with `datafusion` feature will provide a [DataFusion](https://datafusion.apache.org/) \nextension to query Hudi tables.\n\n<details>\n<summary>Add crate hudi with datafusion feature to your application to query a Hudi table.</summary>\n\n```shell\ncargo new my_project --bin && cd my_project\ncargo add tokio@1 datafusion@43\ncargo add hudi --features datafusion\n```\n\nUpdate `src/main.rs` with the code snippet below then `cargo run`.\n\n</details>\n\n```rust\nuse std::sync::Arc;\n\nuse datafusion::error::Result;\nuse datafusion::prelude::{DataFrame, SessionContext};\nuse hudi::HudiDataSource;\n\n#[tokio::main]\nasync fn main() -> Result<()> {\n    let ctx = SessionContext::new();\n    let hudi = HudiDataSource::new_with_options(\n        \"/tmp/trips_table\",\n        [(\"hoodie.read.input.partitions\", \"5\")]).await?;\n    ctx.register_table(\"trips_table\", Arc::new(hudi))?;\n    let df: DataFrame = ctx.sql(\"SELECT * from trips_table where city = 'san_francisco'\").await?;\n    df.show().await?;\n    Ok(())\n}\n```\n\n### Other Integrations\n\nHudi is also integrated with\n\n- [Daft](https://www.getdaft.io/projects/docs/en/stable/user_guide/integrations/hudi.html)\n- [Ray](https://docs.ray.io/en/latest/data/api/doc/ray.data.read_hudi.html#ray.data.read_hudi)\n\n### Work with cloud storage\n\nEnsure cloud storage credentials are set properly as environment variables, e.g., `AWS_*`, `AZURE_*`, or `GOOGLE_*`.\nRelevant storage environment variables will then be picked up. The target table's base uri with schemes such\nas `s3://`, `az://`, or `gs://` will be processed accordingly.\n\nAlternatively, you can pass the storage configuration as options via Table APIs.\n\n#### Python\n\n```python\nfrom hudi import HudiTableBuilder\n\nhudi_table = (\n    HudiTableBuilder\n    .from_base_uri(\"s3://bucket/trips_table\")\n    .with_option(\"aws_region\", \"us-west-2\")\n    .build()\n)\n```\n\n#### Rust\n\n```rust\nuse hudi::table::builder::TableBuilder as HudiTableBuilder;\n\nasync fn main() -> Result<()> {\n    let hudi_table = \n        HudiTableBuilder::from_base_uri(\"s3://bucket/trips_table\")\n        .with_option(\"aws_region\", \"us-west-2\")\n        .build().await?;\n}\n```\n\n## Contributing\n\nCheck out the [contributing guide](./CONTRIBUTING.md) for all the details about making contributions to the project.\n\n",
    "bugtrack_url": null,
    "license": "Apache License 2.0",
    "summary": "Native Python binding for Apache Hudi, based on hudi-rs.",
    "version": "0.3.0",
    "project_urls": {
        "Homepage": "https://github.com/apache/hudi-rs",
        "repository": "https://github.com/apache/hudi-rs/tree/main/python/"
    },
    "split_keywords": [
        "apachehudi",
        " hudi",
        " datalake",
        " arrow"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "90cb684049028b50f905abae38df3921f7112e44a2169144c7056520e359d1ae",
                "md5": "e033c023f46d67ad51ba108021570552",
                "sha256": "61c043376279e574615db61d4e20e66f457fdaa5240619e87a53c1f8ee961fb4"
            },
            "downloads": -1,
            "filename": "hudi-0.3.0-cp39-abi3-macosx_10_12_x86_64.whl",
            "has_sig": false,
            "md5_digest": "e033c023f46d67ad51ba108021570552",
            "packagetype": "bdist_wheel",
            "python_version": "cp39",
            "requires_python": ">=3.9",
            "size": 6893253,
            "upload_time": "2025-02-02T17:04:35",
            "upload_time_iso_8601": "2025-02-02T17:04:35.292351Z",
            "url": "https://files.pythonhosted.org/packages/90/cb/684049028b50f905abae38df3921f7112e44a2169144c7056520e359d1ae/hudi-0.3.0-cp39-abi3-macosx_10_12_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "2d24c4ce6909ca454ec86b0ca920b1f99224f8a0547ef9e1ad56c04d4e365a5d",
                "md5": "795978a171f72dd607c1e02ffbb1683c",
                "sha256": "29836767b068357b43da5918a6b4e188f9a3789cbe4d22915de9e9594b8cb265"
            },
            "downloads": -1,
            "filename": "hudi-0.3.0-cp39-abi3-macosx_11_0_arm64.whl",
            "has_sig": false,
            "md5_digest": "795978a171f72dd607c1e02ffbb1683c",
            "packagetype": "bdist_wheel",
            "python_version": "cp39",
            "requires_python": ">=3.9",
            "size": 6471586,
            "upload_time": "2025-02-02T17:05:24",
            "upload_time_iso_8601": "2025-02-02T17:05:24.976565Z",
            "url": "https://files.pythonhosted.org/packages/2d/24/c4ce6909ca454ec86b0ca920b1f99224f8a0547ef9e1ad56c04d4e365a5d/hudi-0.3.0-cp39-abi3-macosx_11_0_arm64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "4674f3eb1ed1f0b01e8f0bf45eb5dc6a5a192cccfdf2207dc14dcceb3d4609b4",
                "md5": "d09223d91643043c84eab9435f94f6f6",
                "sha256": "61b9d6c7aa4d7f4f828e01a16dfbebb373746f474b1bf613ca9f51662d597e55"
            },
            "downloads": -1,
            "filename": "hudi-0.3.0-cp39-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
            "has_sig": false,
            "md5_digest": "d09223d91643043c84eab9435f94f6f6",
            "packagetype": "bdist_wheel",
            "python_version": "cp39",
            "requires_python": ">=3.9",
            "size": 7460024,
            "upload_time": "2025-02-02T17:09:44",
            "upload_time_iso_8601": "2025-02-02T17:09:44.144323Z",
            "url": "https://files.pythonhosted.org/packages/46/74/f3eb1ed1f0b01e8f0bf45eb5dc6a5a192cccfdf2207dc14dcceb3d4609b4/hudi-0.3.0-cp39-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "76c23de897a969fa9c43346e320915503222976a9557b87fca9debded9505d7f",
                "md5": "30e32b7cb607f174bc217e0b70b58e06",
                "sha256": "6c3cb690777451d977f761a6d19ffd2b357d13e8fc74ca83bc2f3b226a0a179b"
            },
            "downloads": -1,
            "filename": "hudi-0.3.0-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
            "has_sig": false,
            "md5_digest": "30e32b7cb607f174bc217e0b70b58e06",
            "packagetype": "bdist_wheel",
            "python_version": "cp39",
            "requires_python": ">=3.9",
            "size": 7580196,
            "upload_time": "2025-02-02T17:05:24",
            "upload_time_iso_8601": "2025-02-02T17:05:24.007992Z",
            "url": "https://files.pythonhosted.org/packages/76/c2/3de897a969fa9c43346e320915503222976a9557b87fca9debded9505d7f/hudi-0.3.0-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "5e52d8e99efda7cb7cf8fbb2f31f5011e7d8e3bb6ed241a95955dd18a2813f96",
                "md5": "38ec310fbf0aa4c96fcba219aa201814",
                "sha256": "b0cc5741e31f5fd6e7495b1cd8e652be57be2b1a80e4434a40b99ec5ee160f44"
            },
            "downloads": -1,
            "filename": "hudi-0.3.0-cp39-abi3-win_amd64.whl",
            "has_sig": false,
            "md5_digest": "38ec310fbf0aa4c96fcba219aa201814",
            "packagetype": "bdist_wheel",
            "python_version": "cp39",
            "requires_python": ">=3.9",
            "size": 6360610,
            "upload_time": "2025-02-02T17:09:02",
            "upload_time_iso_8601": "2025-02-02T17:09:02.159726Z",
            "url": "https://files.pythonhosted.org/packages/5e/52/d8e99efda7cb7cf8fbb2f31f5011e7d8e3bb6ed241a95955dd18a2813f96/hudi-0.3.0-cp39-abi3-win_amd64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "8912dea14552cc792c9caa67834658f569fcec07f1343f5f1e84aa573dec943f",
                "md5": "adfa233b0c23690f38082f6aefc8ac07",
                "sha256": "fee85d8afc545231d066bb02e375ada1e42f927656bfb75f4bc74d5604449e05"
            },
            "downloads": -1,
            "filename": "hudi-0.3.0.tar.gz",
            "has_sig": false,
            "md5_digest": "adfa233b0c23690f38082f6aefc8ac07",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 417203,
            "upload_time": "2025-02-02T17:05:27",
            "upload_time_iso_8601": "2025-02-02T17:05:27.389963Z",
            "url": "https://files.pythonhosted.org/packages/89/12/dea14552cc792c9caa67834658f569fcec07f1343f5f1e84aa573dec943f/hudi-0.3.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-02-02 17:05:27",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "apache",
    "github_project": "hudi-rs",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "hudi"
}
        
Elapsed time: 0.91721s