<p align="center">
<img src="https://raw.githubusercontent.com/hzacode/huez/main/logo.png" alt="Huez Logo" width="200"/>
</p>
<h1 align="center">Huez</h1>
<p align="center">
<em>A Unified Color Scheme Solution for Python Visualization</em>
<br />
<a href="#features">✨ Features</a> •
<a href="#installation">🚀 Quick Start</a> •
<a href="#usage">📚 Libraries</a> •
<a href="#schemes">🎨 Schemes</a>
</p>
<p align="center">
<img src="https://img.shields.io/badge/python-3.7+-blue.svg" alt="Python Version"/>
<img src="https://img.shields.io/badge/License-MIT-yellow.svg" alt="License"/>
<img src="https://img.shields.io/badge/status-pre--alpha-red.svg" alt="Status"/>
</p>
<p align="center">
<em>"Good visualizations should not be ruined by bad color schemes."</em>
</p>
<div align="center">
**Huez** is a unified Python visualization color scheme solution that instantly upgrades your charts from amateur to professional publication-quality.
*True one-line code, automatic coloring for all libraries!*
</div>
## ✨ Features
- 🚀 **True Automatic Coloring**: All major libraries support native syntax automatic coloring, no manual color specification needed
- 🎯 **Perfect Cross-Library Consistency**: Matplotlib, Seaborn, plotnine, Altair, Plotly completely unified color experience
- 🎨 **Rich Built-in & Custom Schemes**: Professional academic palettes plus easy custom scheme creation and loading
- ⚡ **Zero Learning Cost**: Use native syntax of each library, no need to learn additional APIs
- 🔧 **One Line Does It All**: Just `hz.use("scheme-1")` to enable automatic coloring for all libraries
## 🚀 Quick Start
### Installation
```bash
pip install huez
```
### Basic Usage
```python
import huez as hz
# 🎨 One line of code, global coloring
hz.use("scheme-1")
# ✨ Now all libraries automatically color using native syntax!
```
## 📚 Supported Visualization Libraries
**Matplotlib**
```python
import matplotlib.pyplot as plt
plt.plot(x, y1, label='Data 1') # Pure native syntax - colors auto-applied!
plt.plot(x, y2, label='Data 2') # Pure native syntax - colors auto-applied!
plt.legend()
```
**Seaborn**
```python
import seaborn as sns
sns.scatterplot(data=df, x='x', y='y', hue='category') # Pure native syntax - colors auto-applied!
```
**plotnine**
```python
from plotnine import *
(ggplot(df, aes('x', 'y', color='category')) +
geom_point()) # Pure native syntax - colors auto-applied!
```
**Altair**
```python
import altair as alt
alt.Chart(df).mark_circle().encode(
x='x:Q', y='y:Q', color='category:N' # Pure native syntax - colors auto-applied!
)
```
**Plotly**
```python
import plotly.graph_objects as go
fig = go.Figure()
fig.add_trace(go.Scatter(x=x, y=y, name='Data')) # Pure native syntax - colors auto-applied!
```
## 🎨 Rich Built-in & Custom Schemes
Huez comes with a rich collection of **professional color schemes** and supports **easy customization**:
### ✨ Custom Schemes
```python
# Easy custom scheme creation
hz.create_scheme("my_scheme", colors=["#FF6B6B", "#4ECDC4", "#45B7D1"])
hz.use("my_scheme")
# Or load from file
hz.load_scheme("path/to/my_colors.yaml")
```
## 📄 License
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
<div align="center">
---
<sub>Made with ❤️ for the Python visualization community</sub>
⭐ **If this project helps you, please give us a star!** ⭐
</div>
Raw data
{
"_id": null,
"home_page": null,
"name": "huez",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.7",
"maintainer_email": "Ang <ang@hezhiang.com>",
"keywords": "visualization, color, scheme, matplotlib, seaborn, plotly, altair, plotnine",
"author": null,
"author_email": "Ang <ang@hezhiang.com>",
"download_url": "https://files.pythonhosted.org/packages/f8/22/d719ff95c9c1b2e26e43c98f7363ba4254e809948217a34e363c37c15ab8/huez-0.0.1.tar.gz",
"platform": null,
"description": "<p align=\"center\">\r\n <img src=\"https://raw.githubusercontent.com/hzacode/huez/main/logo.png\" alt=\"Huez Logo\" width=\"200\"/>\r\n</p>\r\n\r\n<h1 align=\"center\">Huez</h1>\r\n\r\n<p align=\"center\">\r\n <em>A Unified Color Scheme Solution for Python Visualization</em>\r\n <br />\r\n <a href=\"#features\">\u2728 Features</a> \u2022\r\n <a href=\"#installation\">\ud83d\ude80 Quick Start</a> \u2022\r\n <a href=\"#usage\">\ud83d\udcda Libraries</a> \u2022\r\n <a href=\"#schemes\">\ud83c\udfa8 Schemes</a>\r\n</p>\r\n\r\n<p align=\"center\">\r\n <img src=\"https://img.shields.io/badge/python-3.7+-blue.svg\" alt=\"Python Version\"/>\r\n <img src=\"https://img.shields.io/badge/License-MIT-yellow.svg\" alt=\"License\"/>\r\n <img src=\"https://img.shields.io/badge/status-pre--alpha-red.svg\" alt=\"Status\"/>\r\n</p>\r\n\r\n<p align=\"center\">\r\n <em>\"Good visualizations should not be ruined by bad color schemes.\"</em>\r\n</p>\r\n\r\n<div align=\"center\">\r\n\r\n**Huez** is a unified Python visualization color scheme solution that instantly upgrades your charts from amateur to professional publication-quality. \r\n\r\n*True one-line code, automatic coloring for all libraries!*\r\n\r\n</div>\r\n\r\n## \u2728 Features\r\n\r\n- \ud83d\ude80 **True Automatic Coloring**: All major libraries support native syntax automatic coloring, no manual color specification needed\r\n- \ud83c\udfaf **Perfect Cross-Library Consistency**: Matplotlib, Seaborn, plotnine, Altair, Plotly completely unified color experience\r\n- \ud83c\udfa8 **Rich Built-in & Custom Schemes**: Professional academic palettes plus easy custom scheme creation and loading\r\n- \u26a1 **Zero Learning Cost**: Use native syntax of each library, no need to learn additional APIs\r\n- \ud83d\udd27 **One Line Does It All**: Just `hz.use(\"scheme-1\")` to enable automatic coloring for all libraries\r\n\r\n## \ud83d\ude80 Quick Start\r\n\r\n### Installation\r\n\r\n```bash\r\npip install huez\r\n```\r\n\r\n### Basic Usage\r\n\r\n```python\r\nimport huez as hz\r\n\r\n# \ud83c\udfa8 One line of code, global coloring\r\nhz.use(\"scheme-1\")\r\n\r\n# \u2728 Now all libraries automatically color using native syntax!\r\n```\r\n\r\n## \ud83d\udcda Supported Visualization Libraries\r\n\r\n**Matplotlib**\r\n\r\n```python\r\nimport matplotlib.pyplot as plt\r\nplt.plot(x, y1, label='Data 1') # Pure native syntax - colors auto-applied!\r\nplt.plot(x, y2, label='Data 2') # Pure native syntax - colors auto-applied!\r\nplt.legend()\r\n```\r\n\r\n**Seaborn**\r\n\r\n```python\r\nimport seaborn as sns\r\nsns.scatterplot(data=df, x='x', y='y', hue='category') # Pure native syntax - colors auto-applied!\r\n```\r\n\r\n**plotnine**\r\n\r\n```python\r\nfrom plotnine import *\r\n(ggplot(df, aes('x', 'y', color='category')) + \r\n geom_point()) # Pure native syntax - colors auto-applied!\r\n```\r\n\r\n**Altair**\r\n\r\n```python\r\nimport altair as alt\r\nalt.Chart(df).mark_circle().encode(\r\n x='x:Q', y='y:Q', color='category:N' # Pure native syntax - colors auto-applied!\r\n)\r\n```\r\n\r\n**Plotly**\r\n\r\n```python\r\nimport plotly.graph_objects as go\r\nfig = go.Figure()\r\nfig.add_trace(go.Scatter(x=x, y=y, name='Data')) # Pure native syntax - colors auto-applied!\r\n```\r\n\r\n## \ud83c\udfa8 Rich Built-in & Custom Schemes\r\n\r\nHuez comes with a rich collection of **professional color schemes** and supports **easy customization**:\r\n\r\n### \u2728 Custom Schemes\r\n```python\r\n# Easy custom scheme creation\r\nhz.create_scheme(\"my_scheme\", colors=[\"#FF6B6B\", \"#4ECDC4\", \"#45B7D1\"])\r\nhz.use(\"my_scheme\")\r\n\r\n# Or load from file\r\nhz.load_scheme(\"path/to/my_colors.yaml\")\r\n```\r\n\r\n## \ud83d\udcc4 License\r\n\r\nThis project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.\r\n\r\n<div align=\"center\">\r\n\r\n---\r\n\r\n<sub>Made with \u2764\ufe0f for the Python visualization community</sub>\r\n\r\n\u2b50 **If this project helps you, please give us a star!** \u2b50\r\n\r\n</div>\r\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "A unified color scheme solution for Python visualization",
"version": "0.0.1",
"project_urls": {
"Homepage": "https://github.com/hzacode/huez",
"Issues": "https://github.com/hzacode/huez/issues",
"Repository": "https://github.com/hzacode/huez"
},
"split_keywords": [
"visualization",
" color",
" scheme",
" matplotlib",
" seaborn",
" plotly",
" altair",
" plotnine"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "9b1a894b3d86c16d3167e9f91fda424dcec4a1846aee297b06881b826c4173e0",
"md5": "e029db690380b2b76e62ae93bb9f302d",
"sha256": "f7831daed926135970eb0fb0edeff5ca4acbaa5c53cdd83dafcc74dcbf8e766a"
},
"downloads": -1,
"filename": "huez-0.0.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "e029db690380b2b76e62ae93bb9f302d",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.7",
"size": 53723,
"upload_time": "2025-09-11T05:39:55",
"upload_time_iso_8601": "2025-09-11T05:39:55.257090Z",
"url": "https://files.pythonhosted.org/packages/9b/1a/894b3d86c16d3167e9f91fda424dcec4a1846aee297b06881b826c4173e0/huez-0.0.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "f822d719ff95c9c1b2e26e43c98f7363ba4254e809948217a34e363c37c15ab8",
"md5": "efc4faed90e43dd625c248f6d4ec529c",
"sha256": "d2af2895c620a25c822cb17f42b77c70e523e92c3f7fe41a573011105bb796f2"
},
"downloads": -1,
"filename": "huez-0.0.1.tar.gz",
"has_sig": false,
"md5_digest": "efc4faed90e43dd625c248f6d4ec529c",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.7",
"size": 45134,
"upload_time": "2025-09-11T05:39:56",
"upload_time_iso_8601": "2025-09-11T05:39:56.754342Z",
"url": "https://files.pythonhosted.org/packages/f8/22/d719ff95c9c1b2e26e43c98f7363ba4254e809948217a34e363c37c15ab8/huez-0.0.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-09-11 05:39:56",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "hzacode",
"github_project": "huez",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "huez"
}