hvae-backbone


Namehvae-backbone JSON
Version 0.1.126 PyPI version JSON
download
home_pagehttps://github.com/lacykaltgr/hvae-backbone
SummaryUniversal and customizable implementation of the Hierarchical Variational Autoencoder architecture.
upload_time2024-02-05 12:19:53
maintainer
docs_urlNone
authorLászló Freund
requires_python
licenseMIT
keywords vae hierarchical vae generative model
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # hVAE - backbone

This repository contains:
- customizable backbone implementation of hVAE
- reuseable hVAE components such as blocks, layers, losses, etc.
- training, evaluation and analyzation scripts
- checkpoint handling (using  [Weights & Biases](https://wandb.ai/site))


## Installation
```bash
pip install hvae_backbone
```

## Usage
This repository is intended to be used as a backend package.  
Please refer to  [hvae template](https://github.com/lacykaltgr/hvae) repository for usage instructions.


## Project Structure

```
├── hvae_backbone
│   ├── elements
│   │   ├── __init__.py             
│   │   ├── data_preproc.py         # Modules for data preprocessing
│   │   ├── dataset.py              # Base dataset class
│   │   ├── distributions.py        # Distributions, distributions generation
│   │   ├── layers.py               # Layers for building models
│   │   ├── losses.py               # Loss functions
│   │   ├── nets.py                 # Network architectures
│   │   ├── optimizers.py           # Optimizers
│   │   ├── schedules.py            # Schedules e.g. LR, KL weight
│   ├── __init__.py                 # package level scripts
│   ├── analysis.py                 # Analysis tools for trained models
│   ├── block.py                    # Blocks for building hierarchical models
│   ├── checkpoint.py               # Checkpoint handling (save, load)
│   ├── functional.py               # Functional scripts (training, loss, etc.)
│   ├── hvae.py                     # General hVAE class
│   ├── sequence.py                 # General sequential hVAE class
│   ├── utils.py                    # Utility functions
```


# TODO:
- callbacks
- preprocessing
- sample vs rsmaple blokkoknál (SimpleGenBlock)
- weight initialization

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/lacykaltgr/hvae-backbone",
    "name": "hvae-backbone",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "vae,hierarchical vae,generative model",
    "author": "L\u00e1szl\u00f3 Freund",
    "author_email": "freundl0509@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/33/27/acf659493dc6ab1df92c82decf649d928794886b8c22b55d924172a092ae/hvae_backbone-0.1.126.tar.gz",
    "platform": null,
    "description": "# hVAE - backbone\n\nThis repository contains:\n- customizable backbone implementation of hVAE\n- reuseable hVAE components such as blocks, layers, losses, etc.\n- training, evaluation and analyzation scripts\n- checkpoint handling (using  [Weights & Biases](https://wandb.ai/site))\n\n\n## Installation\n```bash\npip install hvae_backbone\n```\n\n## Usage\nThis repository is intended to be used as a backend package.  \nPlease refer to  [hvae template](https://github.com/lacykaltgr/hvae) repository for usage instructions.\n\n\n## Project Structure\n\n```\n\u251c\u2500\u2500 hvae_backbone\n\u2502   \u251c\u2500\u2500 elements\n\u2502   \u2502   \u251c\u2500\u2500 __init__.py             \n\u2502   \u2502   \u251c\u2500\u2500 data_preproc.py         # Modules for data preprocessing\n\u2502   \u2502   \u251c\u2500\u2500 dataset.py              # Base dataset class\n\u2502   \u2502   \u251c\u2500\u2500 distributions.py        # Distributions, distributions generation\n\u2502   \u2502   \u251c\u2500\u2500 layers.py               # Layers for building models\n\u2502   \u2502   \u251c\u2500\u2500 losses.py               # Loss functions\n\u2502   \u2502   \u251c\u2500\u2500 nets.py                 # Network architectures\n\u2502   \u2502   \u251c\u2500\u2500 optimizers.py           # Optimizers\n\u2502   \u2502   \u251c\u2500\u2500 schedules.py            # Schedules e.g. LR, KL weight\n\u2502   \u251c\u2500\u2500 __init__.py                 # package level scripts\n\u2502   \u251c\u2500\u2500 analysis.py                 # Analysis tools for trained models\n\u2502   \u251c\u2500\u2500 block.py                    # Blocks for building hierarchical models\n\u2502   \u251c\u2500\u2500 checkpoint.py               # Checkpoint handling (save, load)\n\u2502   \u251c\u2500\u2500 functional.py               # Functional scripts (training, loss, etc.)\n\u2502   \u251c\u2500\u2500 hvae.py                     # General hVAE class\n\u2502   \u251c\u2500\u2500 sequence.py                 # General sequential hVAE class\n\u2502   \u251c\u2500\u2500 utils.py                    # Utility functions\n```\n\n\n# TODO:\n- callbacks\n- preprocessing\n- sample vs rsmaple blokkokn\u00e1l (SimpleGenBlock)\n- weight initialization\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Universal and customizable implementation of the Hierarchical Variational Autoencoder architecture.",
    "version": "0.1.126",
    "project_urls": {
        "Homepage": "https://github.com/lacykaltgr/hvae-backbone"
    },
    "split_keywords": [
        "vae",
        "hierarchical vae",
        "generative model"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "2f736cafcbbeda700bb9b079ab88091f0574a2c1b14ea401e9a2122fb9385787",
                "md5": "6ed91d9855ff9927fd339180f045236a",
                "sha256": "c912e13a4d9214a05b937b860cafad0d07b9286b7bf8ed9efa683120a412a388"
            },
            "downloads": -1,
            "filename": "hvae_backbone-0.1.126-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "6ed91d9855ff9927fd339180f045236a",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 43074,
            "upload_time": "2024-02-05T12:19:47",
            "upload_time_iso_8601": "2024-02-05T12:19:47.727871Z",
            "url": "https://files.pythonhosted.org/packages/2f/73/6cafcbbeda700bb9b079ab88091f0574a2c1b14ea401e9a2122fb9385787/hvae_backbone-0.1.126-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "3327acf659493dc6ab1df92c82decf649d928794886b8c22b55d924172a092ae",
                "md5": "b7009ab439d485538cba273c6463b3f8",
                "sha256": "e7691dac295eb4aaaeb0d41fe461af145bac31e0aae070549cd7b77bdccdffa4"
            },
            "downloads": -1,
            "filename": "hvae_backbone-0.1.126.tar.gz",
            "has_sig": false,
            "md5_digest": "b7009ab439d485538cba273c6463b3f8",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 34510,
            "upload_time": "2024-02-05T12:19:53",
            "upload_time_iso_8601": "2024-02-05T12:19:53.148788Z",
            "url": "https://files.pythonhosted.org/packages/33/27/acf659493dc6ab1df92c82decf649d928794886b8c22b55d924172a092ae/hvae_backbone-0.1.126.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-02-05 12:19:53",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "lacykaltgr",
    "github_project": "hvae-backbone",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "hvae-backbone"
}
        
Elapsed time: 0.22746s