hvsrprocpy


Namehvsrprocpy JSON
Version 1.1.0 PyPI version JSON
download
home_pagehttps://github.com/fjornelas/hvsrprocpy
SummaryA python library for performing horizontal-to-vertical spectral ratio (HVSR) processing
upload_time2024-08-21 02:26:43
maintainerNone
docs_urlNone
authorFrancisco Javier Ornelas
requires_python>=3.8
licenseGNU General Public License v3
keywords hvsr fas time series microtremors
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <!-- Our title -->
<div align="center">
  <h3 style="font-size: 25px;">hvsrprocpy</h3>
</div>

<!-- Short description -->
<p align="center">
   A python library that performs Horizontal-to-Vertical Spectral Ratio (HVSR) processing.
</p>

[![DOI](https://zenodo.org/badge/808826090.svg)](https://zenodo.org/doi/10.5281/zenodo.11515238)
[![Pages](https://github.com/fjornelas/hvsrprocpy/actions/workflows/pages/pages-build-deployment/badge.svg)](https://github.com/fjornelas/hvsrprocpy/actions/workflows/pages/pages-build-deployment)
![pypi - version](https://img.shields.io/pypi/v/hvsrprocpy)
[![Codacy Badge](https://app.codacy.com/project/badge/Grade/80fc3884310249019b8508415f516f53)](https://app.codacy.com/gh/fjornelas/hvsrprocpy/dashboard?utm_source=gh&utm_medium=referral&utm_content=&utm_campaign=Badge_grade)
![GitHub License](https://img.shields.io/github/license/fjornelas/hvsrprocpy)
[![codecov](https://codecov.io/gh/fjornelas/hvsrprocpy/graph/badge.svg?token=WKOVWZ0LFN)](https://codecov.io/gh/fjornelas/hvsrprocpy)
[![Report Issues!](https://img.shields.io/badge/Report%20Issues-Here-1abc9c.svg)](https://github.com/fjornelas/hvsrprocpy/issues)
[![Open Source?
Yes!](https://img.shields.io/badge/Open%20Source-Yes-green.svg)](https://github.com/fjornelas/hvsrprocpy)

<div align="center">
    <h3 style=" font-size: 25px;">Authors</h3>
</div>

<!-- Short description -->

<p align="center">
   Francisco Javier G. Ornelas<sup>1</sup>, Pengfei Wang<sup>2</sup>, Scott J. Brandenberg<sup>1</sup>, Jonathan P. Stewart<sup>1</sup>
</p>

<sup>1</sup> University of California, Los Angeles (UCLA) <br> 
<sup>2</sup> Old Dominion University<br>

<div style="text-align: center;">
    <h3 style=" font-size: 25px;">Table of Contents</h3>
</div>


 - [Introduction](#introduction)                                                      
 - [Background](#Background)   
 - [Getting started](#Getting-started) 
 - [Citation](#Citation)       
 - [Issues](#Issues)  

# Introduction

---

A python library that can perform Horizontal-to-Vertical Spectral 
Ratio (HVSR) processing from recordings of microtremors or earthquakes from 3-component 
seismometers. This library was developed by Francisco Javier G. Ornelas under the supervision
of Dr. Jonathan P. Stewart and Dr. Scott J. Brandenberg at the University of California, Los Angeles (UCLA). 
Other contributions came from Dr. Pengfei Wang a professor at Old Dominion University, who wrote `hvsrProc` 
a rstudio package, which this python library is based on. That work can be found here:

>Wang, P. wltcwpf/hvsrProc: First release (Version v1.0.0). Zenodo. http://doi.org/10.5281/zenodo.4724141


# Background

---

HVSR is derived from ratios of the horizontal and vertical components
of a Fourier Amplitude Spectrum (FAS) from a 3-component recording of
microtremors or earthquakes. This is done by recording ground vibrations either from
temporarily-deployed or permanently-installed seismometers, for a relatively short
period of time (~1-2 hrs) or a longer period of time.

This method or technique was first proposed by Nogoshi and Igarashi (1971) 
<a href="https://www.scirp.org/reference/referencespapers?referenceid=3100696" target="_blank">[ABSTRACT]</a> and 
later popularized by Nakamura (1989) <a href="https://trid.trb.org/View/294184" target="_blank">[ABSTRACT]</a>.
The method works by assuming that the horizontal wavefield is amplified as seismic waves propagate
through the soil deposits compared to the vertical wavefield.

HVSR can be useful in site characterization since it can identify resonant frequencies at sites, through peaks in
an HVSR spectrum. Studies have also found that the lowest peak in HVSR spectra can be associated with the fundamental
frequency of a site (e.g., <a href="https://link.springer.com/article/10.1007/s10518-012-9413-4" target="_blank">[ABSTRACT]</a>).

# Getting started

---

## Installation


hvsrprocpy is available using pip and can be installed with:

- Jupyter Notebook
`pip install hvsrprocpy`
- PyPI
`py -m pip install hvsrprocpy`
## Usage


`hvsrprocpy` is a library that performs hvsr related processing. The library contains various features, such as:
- Manual selection of windows in the time domain and the frequency domain.
- Rotated HVSR to see the azimuthal variability of HVSR.
- Different distibutions such as normal or log-normal.
- Different smoothing functions such as Konno and Ohmachi and Parzen smoothing.
- Different type of horizontal combinations, such as geometric mean, squared average, and RotD50.
- Various outputs such as mean FAS and HVSR, selected HVSR and ts, and rotated HVSR.

Examples of these can be found under the examples folder in the Github repository <a href="https://github.com/fjornelas/hvsrprocpy" target="_blank">[GIT]</a>

### Example of manual window selection on time series

<img src="https://github.com/fjornelas/hvsrprocpy/blob/main/figs/microtremor_ts_win_sel_example.png?raw=true" width="775">

### Example of manual  window selection on HVSR

<img src="https://github.com/fjornelas/hvsrprocpy/blob/main/figs/hvsr_fas_win_sel_example.png?raw=true" width="775">

### Example of azimuthal plots

<img src="https://github.com/fjornelas/hvsrprocpy/blob/main/figs/hvsr_polar_example.png?raw=true" width="775">

### Example of Mean Curve plot with Metadata

<img src="https://github.com/fjornelas/hvsrprocpy/blob/main/figs/hvsr_mean_curve_and_meta_example.png?raw=true" width="775">

### Example comparisons of Konno and Ohmachi (left) and Parzen smoothing (right) on FAS

<div style="display: flex; flex-direction: row;">
    <img src="https://github.com/fjornelas/hvsrprocpy/blob/main/figs/fas_ko_smoothing_example.png?raw=true" width="400" style="margin-right: 10px;" title="FAS KO Smoothing Example">
    <img src="https://github.com/fjornelas/hvsrprocpy/blob/main/figs/fas_parzen_smoothing_example.png?raw=true" width="400" title="FAS Parzen Smoothing Example">
</div>

# Citation

---

If you use hvsrprocpy (directly or as a dependency of another package) for work resulting in an academic publication or
other instances, we would appreciate if you cite the following:

> Ornelas, F. J. G., Wang, P., Brandenberg, S. J., & Stewart, J. P. (2024). fjornelas/hvsrprocpy: hvsrprocpy (v1.1.0). Zenodo. https://doi.org/10.5281/zenodo.12672550

# Issues

---

Please report any issues or leave comments on the <a href="https://github.com/fjornelas/hvsrprocpy/issues" target="_blank">Issues</a> page.

## License

This project has been licensed under [![The GNU General Public License v3.0](https://www.gnu.org/graphics/gplv3-88x31.png "The GNU General Public License v3.0")](https://www.gnu.org/licenses/gpl-3.0.en.html)
more information about the license can be found here <a href="https://github.com/fjornelas/hvsrprocpy/blob/main/LICENSE" target="_blank">[LICENSE]</a>.

## Acknowledgements

We would also like to thank the many others who aided in the development of this python library, these are:

- John Stapleton
- Chukwuma Okonkwo
- Chukwuebuka C. Nweke
- Tristan Buckreis
- Christopher de la Torre

for their support in helping develop this python library.


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/fjornelas/hvsrprocpy",
    "name": "hvsrprocpy",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "HVSR, FAS, Time Series, microtremors",
    "author": "Francisco Javier Ornelas",
    "author_email": "jornela1@g.ucla.edu",
    "download_url": "https://files.pythonhosted.org/packages/bd/e6/6124b8ad43b4254a666cc113f534906f5189e14be0959c0a17aa4a3a895c/hvsrprocpy-1.1.0.tar.gz",
    "platform": null,
    "description": "<!-- Our title -->\r\n<div align=\"center\">\r\n  <h3 style=\"font-size: 25px;\">hvsrprocpy</h3>\r\n</div>\r\n\r\n<!-- Short description -->\r\n<p align=\"center\">\r\n   A python library that performs Horizontal-to-Vertical Spectral Ratio (HVSR) processing.\r\n</p>\r\n\r\n[![DOI](https://zenodo.org/badge/808826090.svg)](https://zenodo.org/doi/10.5281/zenodo.11515238)\r\n[![Pages](https://github.com/fjornelas/hvsrprocpy/actions/workflows/pages/pages-build-deployment/badge.svg)](https://github.com/fjornelas/hvsrprocpy/actions/workflows/pages/pages-build-deployment)\r\n![pypi - version](https://img.shields.io/pypi/v/hvsrprocpy)\r\n[![Codacy Badge](https://app.codacy.com/project/badge/Grade/80fc3884310249019b8508415f516f53)](https://app.codacy.com/gh/fjornelas/hvsrprocpy/dashboard?utm_source=gh&utm_medium=referral&utm_content=&utm_campaign=Badge_grade)\r\n![GitHub License](https://img.shields.io/github/license/fjornelas/hvsrprocpy)\r\n[![codecov](https://codecov.io/gh/fjornelas/hvsrprocpy/graph/badge.svg?token=WKOVWZ0LFN)](https://codecov.io/gh/fjornelas/hvsrprocpy)\r\n[![Report Issues!](https://img.shields.io/badge/Report%20Issues-Here-1abc9c.svg)](https://github.com/fjornelas/hvsrprocpy/issues)\r\n[![Open Source?\r\nYes!](https://img.shields.io/badge/Open%20Source-Yes-green.svg)](https://github.com/fjornelas/hvsrprocpy)\r\n\r\n<div align=\"center\">\r\n    <h3 style=\" font-size: 25px;\">Authors</h3>\r\n</div>\r\n\r\n<!-- Short description -->\r\n\r\n<p align=\"center\">\r\n   Francisco Javier G. Ornelas<sup>1</sup>, Pengfei Wang<sup>2</sup>, Scott J. Brandenberg<sup>1</sup>, Jonathan P. Stewart<sup>1</sup>\r\n</p>\r\n\r\n<sup>1</sup> University of California, Los Angeles (UCLA) <br> \r\n<sup>2</sup> Old Dominion University<br>\r\n\r\n<div style=\"text-align: center;\">\r\n    <h3 style=\" font-size: 25px;\">Table of Contents</h3>\r\n</div>\r\n\r\n\r\n - [Introduction](#introduction)                                                      \r\n - [Background](#Background)   \r\n - [Getting started](#Getting-started) \r\n - [Citation](#Citation)       \r\n - [Issues](#Issues)  \r\n\r\n# Introduction\r\n\r\n---\r\n\r\nA python library that can perform Horizontal-to-Vertical Spectral \r\nRatio (HVSR) processing from recordings of microtremors or earthquakes from 3-component \r\nseismometers. This library was developed by Francisco Javier G. Ornelas under the supervision\r\nof Dr. Jonathan P. Stewart and Dr. Scott J. Brandenberg at the University of California, Los Angeles (UCLA). \r\nOther contributions came from Dr. Pengfei Wang a professor at Old Dominion University, who wrote `hvsrProc` \r\na rstudio package, which this python library is based on. That work can be found here:\r\n\r\n>Wang, P. wltcwpf/hvsrProc: First release (Version v1.0.0). Zenodo. http://doi.org/10.5281/zenodo.4724141\r\n\r\n\r\n# Background\r\n\r\n---\r\n\r\nHVSR is derived from ratios of the horizontal and vertical components\r\nof a Fourier Amplitude Spectrum (FAS) from a 3-component recording of\r\nmicrotremors or earthquakes. This is done by recording ground vibrations either from\r\ntemporarily-deployed or permanently-installed seismometers, for a relatively short\r\nperiod of time (~1-2 hrs) or a longer period of time.\r\n\r\nThis method or technique was first proposed by Nogoshi and Igarashi (1971) \r\n<a href=\"https://www.scirp.org/reference/referencespapers?referenceid=3100696\" target=\"_blank\">[ABSTRACT]</a> and \r\nlater popularized by Nakamura (1989) <a href=\"https://trid.trb.org/View/294184\" target=\"_blank\">[ABSTRACT]</a>.\r\nThe method works by assuming that the horizontal wavefield is amplified as seismic waves propagate\r\nthrough the soil deposits compared to the vertical wavefield.\r\n\r\nHVSR can be useful in site characterization since it can identify resonant frequencies at sites, through peaks in\r\nan HVSR spectrum. Studies have also found that the lowest peak in HVSR spectra can be associated with the fundamental\r\nfrequency of a site (e.g., <a href=\"https://link.springer.com/article/10.1007/s10518-012-9413-4\" target=\"_blank\">[ABSTRACT]</a>).\r\n\r\n# Getting started\r\n\r\n---\r\n\r\n## Installation\r\n\r\n\r\nhvsrprocpy is available using pip and can be installed with:\r\n\r\n- Jupyter Notebook\r\n`pip install hvsrprocpy`\r\n- PyPI\r\n`py -m pip install hvsrprocpy`\r\n## Usage\r\n\r\n\r\n`hvsrprocpy` is a library that performs hvsr related processing. The library contains various features, such as:\r\n- Manual selection of windows in the time domain and the frequency domain.\r\n- Rotated HVSR to see the azimuthal variability of HVSR.\r\n- Different distibutions such as normal or log-normal.\r\n- Different smoothing functions such as Konno and Ohmachi and Parzen smoothing.\r\n- Different type of horizontal combinations, such as geometric mean, squared average, and RotD50.\r\n- Various outputs such as mean FAS and HVSR, selected HVSR and ts, and rotated HVSR.\r\n\r\nExamples of these can be found under the examples folder in the Github repository <a href=\"https://github.com/fjornelas/hvsrprocpy\" target=\"_blank\">[GIT]</a>\r\n\r\n### Example of manual window selection on time series\r\n\r\n<img src=\"https://github.com/fjornelas/hvsrprocpy/blob/main/figs/microtremor_ts_win_sel_example.png?raw=true\" width=\"775\">\r\n\r\n### Example of manual  window selection on HVSR\r\n\r\n<img src=\"https://github.com/fjornelas/hvsrprocpy/blob/main/figs/hvsr_fas_win_sel_example.png?raw=true\" width=\"775\">\r\n\r\n### Example of azimuthal plots\r\n\r\n<img src=\"https://github.com/fjornelas/hvsrprocpy/blob/main/figs/hvsr_polar_example.png?raw=true\" width=\"775\">\r\n\r\n### Example of Mean Curve plot with Metadata\r\n\r\n<img src=\"https://github.com/fjornelas/hvsrprocpy/blob/main/figs/hvsr_mean_curve_and_meta_example.png?raw=true\" width=\"775\">\r\n\r\n### Example comparisons of Konno and Ohmachi (left) and Parzen smoothing (right) on FAS\r\n\r\n<div style=\"display: flex; flex-direction: row;\">\r\n    <img src=\"https://github.com/fjornelas/hvsrprocpy/blob/main/figs/fas_ko_smoothing_example.png?raw=true\" width=\"400\" style=\"margin-right: 10px;\" title=\"FAS KO Smoothing Example\">\r\n    <img src=\"https://github.com/fjornelas/hvsrprocpy/blob/main/figs/fas_parzen_smoothing_example.png?raw=true\" width=\"400\" title=\"FAS Parzen Smoothing Example\">\r\n</div>\r\n\r\n# Citation\r\n\r\n---\r\n\r\nIf you use hvsrprocpy (directly or as a dependency of another package) for work resulting in an academic publication or\r\nother instances, we would appreciate if you cite the following:\r\n\r\n> Ornelas, F. J. G., Wang, P., Brandenberg, S. J., & Stewart, J. P. (2024). fjornelas/hvsrprocpy: hvsrprocpy (v1.1.0). Zenodo. https://doi.org/10.5281/zenodo.12672550\r\n\r\n# Issues\r\n\r\n---\r\n\r\nPlease report any issues or leave comments on the <a href=\"https://github.com/fjornelas/hvsrprocpy/issues\" target=\"_blank\">Issues</a> page.\r\n\r\n## License\r\n\r\nThis project has been licensed under [![The GNU General Public License v3.0](https://www.gnu.org/graphics/gplv3-88x31.png \"The GNU General Public License v3.0\")](https://www.gnu.org/licenses/gpl-3.0.en.html)\r\nmore information about the license can be found here <a href=\"https://github.com/fjornelas/hvsrprocpy/blob/main/LICENSE\" target=\"_blank\">[LICENSE]</a>.\r\n\r\n## Acknowledgements\r\n\r\nWe would also like to thank the many others who aided in the development of this python library, these are:\r\n\r\n- John Stapleton\r\n- Chukwuma Okonkwo\r\n- Chukwuebuka C. Nweke\r\n- Tristan Buckreis\r\n- Christopher de la Torre\r\n\r\nfor their support in helping develop this python library.\r\n\r\n",
    "bugtrack_url": null,
    "license": "GNU General Public License v3",
    "summary": "A python library for performing horizontal-to-vertical spectral ratio (HVSR) processing",
    "version": "1.1.0",
    "project_urls": {
        "Bug Reports": "https://github.com/fjornelas/hvsrprocpy/issues",
        "Docs": "https://fjornelas.github.io/hvsrprocpy/",
        "Homepage": "https://github.com/fjornelas/hvsrprocpy",
        "Source": "https://github.com/fjornelas/hvsrprocpy/"
    },
    "split_keywords": [
        "hvsr",
        " fas",
        " time series",
        " microtremors"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "7fc995ae8f3b2c5fa4a0a043d77fedfd4b4eff991f638a52985fdaf053d01247",
                "md5": "c5e4fa78e0e271b1333d816d14fe72a0",
                "sha256": "7b612b045b0fab68405e6a9daaeb91a3f328b4256f6015b4882d2c4e8dcce5ae"
            },
            "downloads": -1,
            "filename": "hvsrprocpy-1.1.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "c5e4fa78e0e271b1333d816d14fe72a0",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 58269,
            "upload_time": "2024-08-21T02:26:42",
            "upload_time_iso_8601": "2024-08-21T02:26:42.063749Z",
            "url": "https://files.pythonhosted.org/packages/7f/c9/95ae8f3b2c5fa4a0a043d77fedfd4b4eff991f638a52985fdaf053d01247/hvsrprocpy-1.1.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "bde66124b8ad43b4254a666cc113f534906f5189e14be0959c0a17aa4a3a895c",
                "md5": "a253a84495750299b2e255455ec4a6d4",
                "sha256": "2eeb7d36c23e2a374ccc1080bf7360e6d30380429bef004f2a5d920acf7e980f"
            },
            "downloads": -1,
            "filename": "hvsrprocpy-1.1.0.tar.gz",
            "has_sig": false,
            "md5_digest": "a253a84495750299b2e255455ec4a6d4",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 60302,
            "upload_time": "2024-08-21T02:26:43",
            "upload_time_iso_8601": "2024-08-21T02:26:43.734777Z",
            "url": "https://files.pythonhosted.org/packages/bd/e6/6124b8ad43b4254a666cc113f534906f5189e14be0959c0a17aa4a3a895c/hvsrprocpy-1.1.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-08-21 02:26:43",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "fjornelas",
    "github_project": "hvsrprocpy",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "lcname": "hvsrprocpy"
}
        
Elapsed time: 3.93575s