hwm


Namehwm JSON
Version 1.0.1 PyPI version JSON
download
home_pagehttps://github.com/earthai-tech/hwm
SummaryAdaptive Hammerstein-Wiener Modeling Toolkit
upload_time2024-11-10 06:31:17
maintainerLaurent Kouadio
docs_urlNone
authorLaurent Kouadio
requires_python>=3.9
licenseBSD-3-Clause
keywords machine learning dynamic systems algorithm time series scikit-learn compatible
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage
            # HWM: Adaptive Hammerstein-Wiener Modeling Toolkit

[![License](https://img.shields.io/badge/license-BSD--3--Clause-blue.svg)](LICENSE)  
[![PyPI version](https://img.shields.io/pypi/v/hwm.svg)](https://pypi.org/project/hwm/)  
[![Documentation Status](https://readthedocs.org/projects/hwm/badge/?version=latest)](https://hwm.readthedocs.io/en/latest/)

HWM is a **Python toolkit for adaptive dynamic system modeling**, designed to capture complex nonlinear and linear relationships in data through the Hammerstein-Wiener architecture. With a flexible, modular design, HWM integrates seamlessly with [Scikit-learn](https://scikit-learn.org/), enabling streamlined workflows for regression, classification, and time-series forecasting tasks.

## 🚀 Key Features

- **Adaptive Hammerstein-Wiener Models**: Supports both regression and classification with customizable nonlinear and dynamic components.
- **Time-Series and Dynamic System Modeling**: Tools for handling sequence-based and time-dependent data.
- **Scikit-Learn Compatible API**: Designed to integrate easily with Scikit-learn workflows.
- **Flexible Metrics and Utilities**: Custom metrics like `prediction_stability_score` and `twa_score` for model evaluation, along with data handling utilities.

## 📦 Installation

HWM requires **Python 3.9** or later. Install it from [PyPI](https://pypi.org/project/hwm/) using `pip`:

```bash
pip install hwm
```

For detailed installation instructions, refer to the [Installation Guide](https://hwm.readthedocs.io/en/latest/installation.html).

## 🏁 Getting Started

### 🔍 Example: Classification with Hammerstein-Wiener Model

```python
import numpy as np
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from hwm.estimators import HammersteinWienerClassifier
from hwm.metrics import prediction_stability_score

# Generate synthetic data
X, y = make_classification(n_samples=1000, n_features=20)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

# Initialize the model
hw_model = HammersteinWienerClassifier(
    nonlinear_input_estimator=StandardScaler(),
    nonlinear_output_estimator=StandardScaler(),
    p=2,
    loss="cross_entropy"
)

# Train and evaluate
hw_model.fit(X_train, y_train)
y_pred = hw_model.predict(X_test)
stability_score = prediction_stability_score(y_pred)
print(f"Prediction Stability Score: {stability_score:.4f}")
```

For more usage examples, see the [Examples Page](https://hwm.readthedocs.io/en/latest/examples.html).

## 📖 Documentation

Comprehensive documentation is available on [Read the Docs](https://hwm.readthedocs.io). Key sections include:

- [API Documentation](https://hwm.readthedocs.io/en/latest/api.html): Detailed reference for all modules and functions.
- [User Guide](https://hwm.readthedocs.io/en/latest/user_guide.html): Step-by-step guidance for using HWM.
- [Installation Guide](https://hwm.readthedocs.io/en/latest/installation.html): Complete installation instructions.

## 🔗 Project Links

- **Documentation**: [hwm.readthedocs.io](https://hwm.readthedocs.io)
- **Source Code**: [GitHub Repository](https://github.com/earthai-tech/hwm)
- **Issue Tracker**: [GitHub Issues](https://github.com/earthai-tech/hwm/issues)
- **Download**: [PyPI Downloads](https://pypi.org/project/hwm/#files)

## 🤝 Contributing

We welcome contributions! Please submit issues or pull requests via our [GitHub repository](https://github.com/earthai-tech/hwm). For major changes, discuss your ideas in the issues section first to align with project goals.

## 👨‍💼 Maintainers

- **Laurent Kouadio**  
  - Email: [etanoyau@gmail.com](mailto:etanoyau@gmail.com)  

## 📝 License

HWM is licensed under the BSD-3-Clause license. See the [LICENSE](LICENSE) file for details.

## 🏷️ Keywords

`machine learning`, `dynamic systems`, `regression`,  
`classification`, `time-series`, `Scikit-learn compatible`

---

For additional resources, visit the [User Guide](https://hwm.readthedocs.io/en/latest/user_guide.html) and explore our rich tools for dynamic system modeling and time-series analysis. A practical [example of network intrusion detection](https://github.com/earthai-tech/hwm/blob/main/examples/detailed_hwm_vs_lstm.ipynb) is the use of [KDD Cup 1999](https://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html) dataset.


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/earthai-tech/hwm",
    "name": "hwm",
    "maintainer": "Laurent Kouadio",
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": "etanoyau@gmail.com",
    "keywords": "machine learning, dynamic systems, algorithm, time series, Scikit-learn compatible",
    "author": "Laurent Kouadio",
    "author_email": "etanoyau@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/b4/f9/b6bc4b6c0feb30c9e4a009096710998e6ac272ac1d383b41b37ccf793802/hwm-1.0.1.tar.gz",
    "platform": null,
    "description": "# HWM: Adaptive Hammerstein-Wiener Modeling Toolkit\r\n\r\n[![License](https://img.shields.io/badge/license-BSD--3--Clause-blue.svg)](LICENSE)  \r\n[![PyPI version](https://img.shields.io/pypi/v/hwm.svg)](https://pypi.org/project/hwm/)  \r\n[![Documentation Status](https://readthedocs.org/projects/hwm/badge/?version=latest)](https://hwm.readthedocs.io/en/latest/)\r\n\r\nHWM is a **Python toolkit for adaptive dynamic system modeling**, designed to capture complex nonlinear and linear relationships in data through the Hammerstein-Wiener architecture. With a flexible, modular design, HWM integrates seamlessly with [Scikit-learn](https://scikit-learn.org/), enabling streamlined workflows for regression, classification, and time-series forecasting tasks.\r\n\r\n## \ud83d\ude80 Key Features\r\n\r\n- **Adaptive Hammerstein-Wiener Models**: Supports both regression and classification with customizable nonlinear and dynamic components.\r\n- **Time-Series and Dynamic System Modeling**: Tools for handling sequence-based and time-dependent data.\r\n- **Scikit-Learn Compatible API**: Designed to integrate easily with Scikit-learn workflows.\r\n- **Flexible Metrics and Utilities**: Custom metrics like `prediction_stability_score` and `twa_score` for model evaluation, along with data handling utilities.\r\n\r\n## \ud83d\udce6 Installation\r\n\r\nHWM requires **Python 3.9** or later. Install it from [PyPI](https://pypi.org/project/hwm/) using `pip`:\r\n\r\n```bash\r\npip install hwm\r\n```\r\n\r\nFor detailed installation instructions, refer to the [Installation Guide](https://hwm.readthedocs.io/en/latest/installation.html).\r\n\r\n## \ud83c\udfc1 Getting Started\r\n\r\n### \ud83d\udd0d Example: Classification with Hammerstein-Wiener Model\r\n\r\n```python\r\nimport numpy as np\r\nfrom sklearn.datasets import make_classification\r\nfrom sklearn.model_selection import train_test_split\r\nfrom sklearn.preprocessing import StandardScaler\r\nfrom hwm.estimators import HammersteinWienerClassifier\r\nfrom hwm.metrics import prediction_stability_score\r\n\r\n# Generate synthetic data\r\nX, y = make_classification(n_samples=1000, n_features=20)\r\nX_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)\r\n\r\n# Initialize the model\r\nhw_model = HammersteinWienerClassifier(\r\n    nonlinear_input_estimator=StandardScaler(),\r\n    nonlinear_output_estimator=StandardScaler(),\r\n    p=2,\r\n    loss=\"cross_entropy\"\r\n)\r\n\r\n# Train and evaluate\r\nhw_model.fit(X_train, y_train)\r\ny_pred = hw_model.predict(X_test)\r\nstability_score = prediction_stability_score(y_pred)\r\nprint(f\"Prediction Stability Score: {stability_score:.4f}\")\r\n```\r\n\r\nFor more usage examples, see the [Examples Page](https://hwm.readthedocs.io/en/latest/examples.html).\r\n\r\n## \ud83d\udcd6 Documentation\r\n\r\nComprehensive documentation is available on [Read the Docs](https://hwm.readthedocs.io). Key sections include:\r\n\r\n- [API Documentation](https://hwm.readthedocs.io/en/latest/api.html): Detailed reference for all modules and functions.\r\n- [User Guide](https://hwm.readthedocs.io/en/latest/user_guide.html): Step-by-step guidance for using HWM.\r\n- [Installation Guide](https://hwm.readthedocs.io/en/latest/installation.html): Complete installation instructions.\r\n\r\n## \ud83d\udd17 Project Links\r\n\r\n- **Documentation**: [hwm.readthedocs.io](https://hwm.readthedocs.io)\r\n- **Source Code**: [GitHub Repository](https://github.com/earthai-tech/hwm)\r\n- **Issue Tracker**: [GitHub Issues](https://github.com/earthai-tech/hwm/issues)\r\n- **Download**: [PyPI Downloads](https://pypi.org/project/hwm/#files)\r\n\r\n## \ud83e\udd1d Contributing\r\n\r\nWe welcome contributions! Please submit issues or pull requests via our [GitHub repository](https://github.com/earthai-tech/hwm). For major changes, discuss your ideas in the issues section first to align with project goals.\r\n\r\n## \ud83d\udc68\u200d\ud83d\udcbc Maintainers\r\n\r\n- **Laurent Kouadio**  \r\n  - Email: [etanoyau@gmail.com](mailto:etanoyau@gmail.com)  \r\n\r\n## \ud83d\udcdd License\r\n\r\nHWM is licensed under the BSD-3-Clause license. See the [LICENSE](LICENSE) file for details.\r\n\r\n## \ud83c\udff7\ufe0f Keywords\r\n\r\n`machine learning`, `dynamic systems`, `regression`,  \r\n`classification`, `time-series`, `Scikit-learn compatible`\r\n\r\n---\r\n\r\nFor additional resources, visit the [User Guide](https://hwm.readthedocs.io/en/latest/user_guide.html) and explore our rich tools for dynamic system modeling and time-series analysis. A practical [example of network intrusion detection](https://github.com/earthai-tech/hwm/blob/main/examples/detailed_hwm_vs_lstm.ipynb) is the use of [KDD Cup 1999](https://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html) dataset.\r\n\r\n",
    "bugtrack_url": null,
    "license": "BSD-3-Clause",
    "summary": "Adaptive Hammerstein-Wiener Modeling Toolkit",
    "version": "1.0.1",
    "project_urls": {
        "API Documentation": "https://hwm.readthedocs.io/en/latest/api_references.html",
        "Bugs tracker": "https://github.com/earthai-tech/hwm/issues",
        "Download": "https://pypi.org/project/hwm/#files",
        "Home page": "https://hwm.readthedocs.io",
        "Homepage": "https://github.com/earthai-tech/hwm",
        "Installation guide": "https://hwm.readthedocs.io/en/latest/installation.html",
        "User guide": "https://hwm.readthedocs.io/en/latest/user_guide.html"
    },
    "split_keywords": [
        "machine learning",
        " dynamic systems",
        " algorithm",
        " time series",
        " scikit-learn compatible"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "ea0d98f7df587808a7cd9c41bbddabdcc7618a5b7b9fcdb2707d348a1943393e",
                "md5": "047371c4f68b46e6d73ec2635e12141c",
                "sha256": "61ce2060dda2801867f9e36c8faae9afd54a045dc4a5b5838c6533154227f439"
            },
            "downloads": -1,
            "filename": "hwm-1.0.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "047371c4f68b46e6d73ec2635e12141c",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 87710,
            "upload_time": "2024-11-10T06:31:15",
            "upload_time_iso_8601": "2024-11-10T06:31:15.646408Z",
            "url": "https://files.pythonhosted.org/packages/ea/0d/98f7df587808a7cd9c41bbddabdcc7618a5b7b9fcdb2707d348a1943393e/hwm-1.0.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "b4f9b6bc4b6c0feb30c9e4a009096710998e6ac272ac1d383b41b37ccf793802",
                "md5": "da48e0c04d7104535c5391f3430e5ae6",
                "sha256": "5f09159edf703390f4d3110d4737b2f2c47754a8bf11c2b0993e67270773f8c8"
            },
            "downloads": -1,
            "filename": "hwm-1.0.1.tar.gz",
            "has_sig": false,
            "md5_digest": "da48e0c04d7104535c5391f3430e5ae6",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 89200,
            "upload_time": "2024-11-10T06:31:17",
            "upload_time_iso_8601": "2024-11-10T06:31:17.709357Z",
            "url": "https://files.pythonhosted.org/packages/b4/f9/b6bc4b6c0feb30c9e4a009096710998e6ac272ac1d383b41b37ccf793802/hwm-1.0.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-10 06:31:17",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "earthai-tech",
    "github_project": "hwm",
    "travis_ci": false,
    "coveralls": true,
    "github_actions": true,
    "lcname": "hwm"
}
        
Elapsed time: 0.41282s