hybridbackend-tf115-cpu


Namehybridbackend-tf115-cpu JSON
Version 1.0.0 PyPI version JSON
download
home_pagehttps://github.com/alibaba/HybridBackend
SummaryA high-performance framework for training wide-and-deep recommender systems on heterogeneous cluster
upload_time2023-07-20 09:26:37
maintainer
docs_urlNone
authorAlibaba Group Holding Limited
requires_python
licenseApache License 2.0
keywords deep learning recommendation system
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # HybridBackend

[![cibuild](https://github.com/alibaba/HybridBackend/actions/workflows/cibuild.yaml/badge.svg?branch=main&event=push)](https://github.com/alibaba/HybridBackend/actions/workflows/cibuild.yaml)
[![readthedocs](https://readthedocs.org/projects/hybridbackend/badge/?version=latest)](https://hybridbackend.readthedocs.io/en/latest/?badge=latest)
[![PRs Welcome](https://img.shields.io/badge/PRs-welcome-brightgreen.svg)](http://makeapullrequest.com)
[![license](https://img.shields.io/badge/License-Apache%202.0-brightgreen.svg)](https://opensource.org/licenses/Apache-2.0)

HybridBackend is a high-performance framework for training wide-and-deep
recommender systems on heterogeneous cluster.

## Features

- Memory-efficient loading of categorical data
- GPU-efficient orchestration of embedding layers
- Communication-efficient training and evaluation at scale
- Easy to use with existing AI workflows

## Usage

A minimal example:

```python
import tensorflow as tf
import hybridbackend.tensorflow as hb

ds = hb.data.Dataset.from_parquet(filenames)
ds = ds.batch(batch_size)
# ...

with tf.device('/gpu:0'):
  embs = tf.nn.embedding_lookup_sparse(weights, input_ids)
  # ...
```

Please see [documentation](https://hybridbackend.readthedocs.io/en/latest/) for
more information.

## Install

### Method 1: Install from PyPI

`pip install {PACKAGE}`

| `{PACKAGE}`                                                                             | Dependency                                                              | Python | CUDA | GLIBC  | Data Opt. | Embedding Opt. | Parallelism Opt. |
| ----------------------------------------------------------------------------------------- | ----------------------------------------------------------------------- | ------ | ---- | ------ | --------- | -------------- | ---------------- |
| [hybridbackend-tf115-cu121](https://pypi.org/project/hybridbackend-tf115-cu121/)             | [TensorFlow 1.15](https://github.com/NVIDIA/tensorflow)  | 3.8    | 12.1 | >=2.31 | ✓   | ✓        | ✓          |
| [hybridbackend-tf115-cu100](https://pypi.org/project/hybridbackend-tf115-cu100/)             | [TensorFlow 1.15](https://github.com/tensorflow/tensorflow/tree/r1.15)     | 3.6    | 10.0 | >=2.27 | ✓   | ✓        | ✗          |
| [hybridbackend-tf115-cpu](https://pypi.org/project/hybridbackend-tf115-cpu/)                 | [TensorFlow 1.15](https://github.com/tensorflow/tensorflow/tree/r1.15)     | 3.6    | -    | >=2.24 | ✓   | ✗        | ✗          |

### Method 2: Build from source

See [Building Instructions](https://github.com/alibaba/HybridBackend/blob/main/BUILD.md).

We also provide built docker images for latest [DeepRec](https://github.com/alibaba/DeepRec): 
`registry.cn-shanghai.aliyuncs.com/pai-dlc/hybridbackend:1.0.0-deeprec-py3.6-cu114-ubuntu18.04`

## License

HybridBackend is licensed under the [Apache 2.0 License](LICENSE).

## Community

- Please see [Contributing Guide](https://github.com/alibaba/HybridBackend/blob/main/CONTRIBUTING.md)
  before your first contribution.
- Please [register as an adopter](https://github.com/alibaba/HybridBackend/blob/main/ADOPTERS.md)
  if your organization is interested in adoption. We will discuss
  [RoadMap](https://github.com/alibaba/HybridBackend/blob/main/ROADMAP.md) with
  registered adopters in advance.
- Please cite [HybridBackend](https://ieeexplore.ieee.org/document/9835450) in your publications if it helps:

  ```text
  @inproceedings{zhang2022picasso,
    title={PICASSO: Unleashing the Potential of GPU-centric Training for Wide-and-deep Recommender Systems},
    author={Zhang, Yuanxing and Chen, Langshi and Yang, Siran and Yuan, Man and Yi, Huimin and Zhang, Jie and Wang, Jiamang and Dong, Jianbo and Xu, Yunlong and Song, Yue and others},
    booktitle={2022 IEEE 38th International Conference on Data Engineering (ICDE)},
    year={2022},
    organization={IEEE}
  }
  ```

## Contact Us

If you would like to share your experiences with others, you are welcome to
contact us in DingTalk:

[![dingtalk](https://github.com/alibaba/HybridBackend/raw/main/docs/images/dingtalk.png)](https://qr.dingtalk.com/action/joingroup?code=v1,k1,VouhbeuTwXYEgaLzSOE8o6VF2kTHVJ8lw5h93WbZW8o=&_dt_no_comment=1&origin=11)


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/alibaba/HybridBackend",
    "name": "hybridbackend-tf115-cpu",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "deep learning,recommendation system",
    "author": "Alibaba Group Holding Limited",
    "author_email": "",
    "download_url": "https://github.com/alibaba/HybridBackend/tags",
    "platform": null,
    "description": "# HybridBackend\n\n[![cibuild](https://github.com/alibaba/HybridBackend/actions/workflows/cibuild.yaml/badge.svg?branch=main&event=push)](https://github.com/alibaba/HybridBackend/actions/workflows/cibuild.yaml)\n[![readthedocs](https://readthedocs.org/projects/hybridbackend/badge/?version=latest)](https://hybridbackend.readthedocs.io/en/latest/?badge=latest)\n[![PRs Welcome](https://img.shields.io/badge/PRs-welcome-brightgreen.svg)](http://makeapullrequest.com)\n[![license](https://img.shields.io/badge/License-Apache%202.0-brightgreen.svg)](https://opensource.org/licenses/Apache-2.0)\n\nHybridBackend is a high-performance framework for training wide-and-deep\nrecommender systems on heterogeneous cluster.\n\n## Features\n\n- Memory-efficient loading of categorical data\n- GPU-efficient orchestration of embedding layers\n- Communication-efficient training and evaluation at scale\n- Easy to use with existing AI workflows\n\n## Usage\n\nA minimal example:\n\n```python\nimport tensorflow as tf\nimport hybridbackend.tensorflow as hb\n\nds = hb.data.Dataset.from_parquet(filenames)\nds = ds.batch(batch_size)\n# ...\n\nwith tf.device('/gpu:0'):\n  embs = tf.nn.embedding_lookup_sparse(weights, input_ids)\n  # ...\n```\n\nPlease see [documentation](https://hybridbackend.readthedocs.io/en/latest/) for\nmore information.\n\n## Install\n\n### Method 1: Install from PyPI\n\n`pip install {PACKAGE}`\n\n| `{PACKAGE}`                                                                             | Dependency                                                              | Python | CUDA | GLIBC  | Data Opt. | Embedding Opt. | Parallelism Opt. |\n| ----------------------------------------------------------------------------------------- | ----------------------------------------------------------------------- | ------ | ---- | ------ | --------- | -------------- | ---------------- |\n| [hybridbackend-tf115-cu121](https://pypi.org/project/hybridbackend-tf115-cu121/)             | [TensorFlow 1.15](https://github.com/NVIDIA/tensorflow)  | 3.8    | 12.1 | >=2.31 | ✓   | ✓        | ✓          |\n| [hybridbackend-tf115-cu100](https://pypi.org/project/hybridbackend-tf115-cu100/)             | [TensorFlow 1.15](https://github.com/tensorflow/tensorflow/tree/r1.15)     | 3.6    | 10.0 | >=2.27 | ✓   | ✓        | ✗          |\n| [hybridbackend-tf115-cpu](https://pypi.org/project/hybridbackend-tf115-cpu/)                 | [TensorFlow 1.15](https://github.com/tensorflow/tensorflow/tree/r1.15)     | 3.6    | -    | >=2.24 | ✓   | ✗        | ✗          |\n\n### Method 2: Build from source\n\nSee [Building Instructions](https://github.com/alibaba/HybridBackend/blob/main/BUILD.md).\n\nWe also provide built docker images for latest [DeepRec](https://github.com/alibaba/DeepRec): \n`registry.cn-shanghai.aliyuncs.com/pai-dlc/hybridbackend:1.0.0-deeprec-py3.6-cu114-ubuntu18.04`\n\n## License\n\nHybridBackend is licensed under the [Apache 2.0 License](LICENSE).\n\n## Community\n\n- Please see [Contributing Guide](https://github.com/alibaba/HybridBackend/blob/main/CONTRIBUTING.md)\n  before your first contribution.\n- Please [register as an adopter](https://github.com/alibaba/HybridBackend/blob/main/ADOPTERS.md)\n  if your organization is interested in adoption. We will discuss\n  [RoadMap](https://github.com/alibaba/HybridBackend/blob/main/ROADMAP.md) with\n  registered adopters in advance.\n- Please cite [HybridBackend](https://ieeexplore.ieee.org/document/9835450) in your publications if it helps:\n\n  ```text\n  @inproceedings{zhang2022picasso,\n    title={PICASSO: Unleashing the Potential of GPU-centric Training for Wide-and-deep Recommender Systems},\n    author={Zhang, Yuanxing and Chen, Langshi and Yang, Siran and Yuan, Man and Yi, Huimin and Zhang, Jie and Wang, Jiamang and Dong, Jianbo and Xu, Yunlong and Song, Yue and others},\n    booktitle={2022 IEEE 38th International Conference on Data Engineering (ICDE)},\n    year={2022},\n    organization={IEEE}\n  }\n  ```\n\n## Contact Us\n\nIf you would like to share your experiences with others, you are welcome to\ncontact us in DingTalk:\n\n[![dingtalk](https://github.com/alibaba/HybridBackend/raw/main/docs/images/dingtalk.png)](https://qr.dingtalk.com/action/joingroup?code=v1,k1,VouhbeuTwXYEgaLzSOE8o6VF2kTHVJ8lw5h93WbZW8o=&_dt_no_comment=1&origin=11)\n\n",
    "bugtrack_url": null,
    "license": "Apache License 2.0",
    "summary": "A high-performance framework for training wide-and-deep recommender systems on heterogeneous cluster",
    "version": "1.0.0",
    "project_urls": {
        "Bug Tracker": "https://github.com/alibaba/HybridBackend/issues",
        "Documentation": "https://hybridbackend.readthedocs.io/en/latest/",
        "Download": "https://github.com/alibaba/HybridBackend/tags",
        "Homepage": "https://github.com/alibaba/HybridBackend",
        "Source Code": "https://github.com/alibaba/HybridBackend"
    },
    "split_keywords": [
        "deep learning",
        "recommendation system"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "d926811b7b0061529a40ec441215a52cca6ba41607bc38909a66fa86027a4c91",
                "md5": "c3f2d039bba7cd9c69a84dc544c38c53",
                "sha256": "b91f5ce30279b02e3aa0ceb33071e6ee48fb09d732b3331383ad8e3b9f923e89"
            },
            "downloads": -1,
            "filename": "hybridbackend_tf115_cpu-1.0.0-cp36-cp36m-manylinux_2_24_x86_64.whl",
            "has_sig": false,
            "md5_digest": "c3f2d039bba7cd9c69a84dc544c38c53",
            "packagetype": "bdist_wheel",
            "python_version": "cp36",
            "requires_python": null,
            "size": 32962272,
            "upload_time": "2023-07-20T09:26:37",
            "upload_time_iso_8601": "2023-07-20T09:26:37.989039Z",
            "url": "https://files.pythonhosted.org/packages/d9/26/811b7b0061529a40ec441215a52cca6ba41607bc38909a66fa86027a4c91/hybridbackend_tf115_cpu-1.0.0-cp36-cp36m-manylinux_2_24_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-07-20 09:26:37",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "alibaba",
    "github_project": "HybridBackend",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "hybridbackend-tf115-cpu"
}
        
Elapsed time: 0.25662s