[![DOI](https://zenodo.org/badge/304360097.svg)](https://zenodo.org/badge/latestdoi/304360097) Python tools with a GUI for visualization and analysis (target detection, PCA, material identification, library management) involving multispectral and hyperspectral images.
-User guide at https://github.com/wbasener/hyperspectralpy/blob/main/Spectral%20Tools%20User%20Guide.pdf
-To run with the GUI do "pip install hyperspectralpy" from the command line and then "import hyperspectralpy" from Python.
-There is a demo on YouTube at: https://youtube.com/playlist?list=PLzUi-TW1M9mrxAZGKlCwsFzHDv4y3030B ![](https://github.com/wbasener/hyperspectralpy/blob/main/spectralAdv/Screenshot_HySpec.png?raw=true)
Raw data
{
"_id": null,
"home_page": "https://github.com/wbasener/hyperspectralpy",
"name": "hyperspectralpy",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3",
"maintainer_email": "",
"keywords": "hyperspectralpy",
"author": "Bill Basener",
"author_email": "wb8by@virginia.edu",
"download_url": "https://files.pythonhosted.org/packages/a3/e2/971f3ae0c855fbcc65ba1e826a7a1444f854743af0a9160f8869a868d76b/hyperspectralpy-1.0.1.0.tar.gz",
"platform": null,
"description": "[![DOI](https://zenodo.org/badge/304360097.svg)](https://zenodo.org/badge/latestdoi/304360097) Python tools with a GUI for visualization and analysis (target detection, PCA, material identification, library management) involving multispectral and hyperspectral images. \r\n -User guide at https://github.com/wbasener/hyperspectralpy/blob/main/Spectral%20Tools%20User%20Guide.pdf \r\n -To run with the GUI do \"pip install hyperspectralpy\" from the command line and then \"import hyperspectralpy\" from Python. \r\n -There is a demo on YouTube at: https://youtube.com/playlist?list=PLzUi-TW1M9mrxAZGKlCwsFzHDv4y3030B ![](https://github.com/wbasener/hyperspectralpy/blob/main/spectralAdv/Screenshot_HySpec.png?raw=true)\r\n",
"bugtrack_url": null,
"license": "",
"summary": "A GUI-based toolbox for hyperspectral image and library viewing, detection, classification, and identificaiton analysis.",
"version": "1.0.1.0",
"split_keywords": [
"hyperspectralpy"
],
"urls": [
{
"comment_text": "",
"digests": {
"md5": "d4183191c914774744ea39b79f387ffe",
"sha256": "dc7ffed800ad85b7c972b3a81f147143edc6d2910c018067ade1483a399e15c0"
},
"downloads": -1,
"filename": "hyperspectralpy-1.0.1.0.tar.gz",
"has_sig": false,
"md5_digest": "d4183191c914774744ea39b79f387ffe",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3",
"size": 118288,
"upload_time": "2022-12-15T03:10:04",
"upload_time_iso_8601": "2022-12-15T03:10:04.956318Z",
"url": "https://files.pythonhosted.org/packages/a3/e2/971f3ae0c855fbcc65ba1e826a7a1444f854743af0a9160f8869a868d76b/hyperspectralpy-1.0.1.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2022-12-15 03:10:04",
"github": true,
"gitlab": false,
"bitbucket": false,
"github_user": "wbasener",
"github_project": "hyperspectralpy",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "hyperspectralpy"
}