Name | hystoc JSON |
Version |
0.1.1
JSON |
| download |
home_page | |
Summary | Toolkit for obtaining word-level confidences |
upload_time | 2023-05-12 19:11:48 |
maintainer | |
docs_url | None |
author | |
requires_python | >=3.6 |
license | MIT License Copyright (c) 2023 BUT Speech@FIT Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
keywords |
confidence estimation
asr
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# hystoc
Getting confidences from any end-to-end systems, developed in context of Automatic Speech Recognition.
The underlying technique was previously sucessfuly applied to [semi-supervised learning in OCR](https://arxiv.org/abs/2104.13037).
Hystoc is oblivious to the underlying task, but please note that no special care is provided for non-monotonic tasks such as Machine Translation.
When using Hystoc, please cite (currently redacted because the paper is in a double-blind review).
## Installation
Hystoc is available on PyPi, so you can directly install it:
```
pip install hystoc
```
## Usage
To obtain confidences, simply run:
```
hystoc-confidences --temperature 1.0 hypotheses scores
```
Increasing temperature (to about 3.0) leads to slightly better calibrated confidences.
### Performing direct fusion with Hystoc
Hystoc also allows to directly fuse outputs of multiple systems into a single one.
To this end a list of pairs needs to be provided like this:
```
hystoc-fusion --confidence-file fused.txt --method normalize-per-system example/a.score example/a.txt example/b.score example/b.txt
```
Please note that our experiments did not show Hystoc fusion to consistently outperform Rover.
### Input formats
Both text and score files follow Kaldi-inspired format.
A text file contains hypotheses with the desired level of tokenization given by whitespace:
```
uttA-1 Some example text
uttA-2 Mom example text
uttB-1 Nice bowl of rice
uttB-2 Rice bowl of nice
```
A score file contains (possibly un-normalized) posterior log-probabilities of the hypotheses.
```
uttA-1 -0.264534
uttA-2 -9.381741
uttB-1 -0.185739
uttB-2 -1.294320
```
### Output formats
Both tools accept `--output-method [pctm|ctm]` as an option.
With `ctm`, the output is a CTM file ready for rover fusion or sclite scoring, e.g.:
```
rtve2020_00000000000000000BR-C2!0008099-0008170 1 0.00 0.15 <noise> 0.9183508755328569
rtve2020_00000000000000000BR-C2!0008285-0008422 1 0.00 0.15 dijo 0.5429209752714736
rtve2020_00000000000000000BR-C2!0008285-0008422 1 0.15 0.15 irene 0.9869227855728511
rtve2020_00000000000000000BR-C2!0008450-0008736 1 0.00 0.15 creo 1.0
rtve2020_00000000000000000BR-C2!0008450-0008736 1 0.15 0.15 que 1.0
rtve2020_00000000000000000BR-C2!0008450-0008736 1 0.30 0.15 querrás 0.7093835505039835
rtve2020_00000000000000000BR-C2!0008450-0008736 1 0.45 0.15 un 1.0
rtve2020_00000000000000000BR-C2!0008450-0008736 1 0.60 0.15 poco 1.0
rtve2020_00000000000000000BR-C2!0008450-0008736 1 0.75 0.15 de 1.0
rtve2020_00000000000000000BR-C2!0008450-0008736 1 0.90 0.15 intimidad 1.0
rtve2020_00000000000000000BR-C2!0008450-0008736 1 1.05 0.15 para 1.0
rtve2020_00000000000000000BR-C2!0008450-0008736 1 1.20 0.15 este 0.9906944725165938
rtve2020_00000000000000000BR-C2!0008450-0008736 1 1.35 0.15 visionado 0.9800563178675208
```
The timing information in the CTM is made up.
With `pctm`, the output is a "pseudo-CTM", where the confidence follows after every token, e.g.:
```
rtve2020_00000000000000000BR-C2!0008099-0008170 ay 0.4045044519729132
rtve2020_00000000000000000BR-C2!0008285-0008422 me 0.7169367774080452 dejo 0.7991855335146294 irene 0.9938079240372626
rtve2020_00000000000000000BR-C2!0008450-0008736 creo 1.0 que 1.0 querrás 0.9921967974603854 un 1.0 poco 1.0 de 1.0 intimidad 1.0 para 1.0 este 1.0 visionado 0.9421039825750096
r
```
Raw data
{
"_id": null,
"home_page": "",
"name": "hystoc",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.6",
"maintainer_email": "",
"keywords": "Confidence estimation,ASR",
"author": "",
"author_email": "Karel Bene\u0161 <ibenes@fit.vutbr.cz>",
"download_url": "https://files.pythonhosted.org/packages/26/7c/4e9266dda2819b2b621541c88e78ded6f968484e4dfb898339c7af9909a6/hystoc-0.1.1.tar.gz",
"platform": null,
"description": "# hystoc\nGetting confidences from any end-to-end systems, developed in context of Automatic Speech Recognition.\nThe underlying technique was previously sucessfuly applied to [semi-supervised learning in OCR](https://arxiv.org/abs/2104.13037).\nHystoc is oblivious to the underlying task, but please note that no special care is provided for non-monotonic tasks such as Machine Translation.\n\nWhen using Hystoc, please cite (currently redacted because the paper is in a double-blind review).\n\n## Installation\n\nHystoc is available on PyPi, so you can directly install it:\n\n```\npip install hystoc\n```\n\n## Usage\n\nTo obtain confidences, simply run:\n```\nhystoc-confidences --temperature 1.0 hypotheses scores\n```\n\nIncreasing temperature (to about 3.0) leads to slightly better calibrated confidences.\n\n### Performing direct fusion with Hystoc\nHystoc also allows to directly fuse outputs of multiple systems into a single one.\n\nTo this end a list of pairs needs to be provided like this:\n```\nhystoc-fusion --confidence-file fused.txt --method normalize-per-system example/a.score example/a.txt example/b.score example/b.txt\n```\n\nPlease note that our experiments did not show Hystoc fusion to consistently outperform Rover.\n\n### Input formats\n\nBoth text and score files follow Kaldi-inspired format.\n\nA text file contains hypotheses with the desired level of tokenization given by whitespace:\n```\nuttA-1 Some example text\nuttA-2 Mom example text\nuttB-1 Nice bowl of rice\nuttB-2 Rice bowl of nice\n```\n\nA score file contains (possibly un-normalized) posterior log-probabilities of the hypotheses.\n```\nuttA-1 -0.264534\nuttA-2 -9.381741\nuttB-1 -0.185739\nuttB-2 -1.294320\n```\n\n\n### Output formats\n\nBoth tools accept `--output-method [pctm|ctm]` as an option.\n\nWith `ctm`, the output is a CTM file ready for rover fusion or sclite scoring, e.g.:\n```\nrtve2020_00000000000000000BR-C2!0008099-0008170 1 0.00 0.15 <noise> 0.9183508755328569\nrtve2020_00000000000000000BR-C2!0008285-0008422 1 0.00 0.15 dijo 0.5429209752714736\nrtve2020_00000000000000000BR-C2!0008285-0008422 1 0.15 0.15 irene 0.9869227855728511\nrtve2020_00000000000000000BR-C2!0008450-0008736 1 0.00 0.15 creo 1.0\nrtve2020_00000000000000000BR-C2!0008450-0008736 1 0.15 0.15 que 1.0\nrtve2020_00000000000000000BR-C2!0008450-0008736 1 0.30 0.15 querr\u00e1s 0.7093835505039835\nrtve2020_00000000000000000BR-C2!0008450-0008736 1 0.45 0.15 un 1.0\nrtve2020_00000000000000000BR-C2!0008450-0008736 1 0.60 0.15 poco 1.0\nrtve2020_00000000000000000BR-C2!0008450-0008736 1 0.75 0.15 de 1.0\nrtve2020_00000000000000000BR-C2!0008450-0008736 1 0.90 0.15 intimidad 1.0\nrtve2020_00000000000000000BR-C2!0008450-0008736 1 1.05 0.15 para 1.0\nrtve2020_00000000000000000BR-C2!0008450-0008736 1 1.20 0.15 este 0.9906944725165938\nrtve2020_00000000000000000BR-C2!0008450-0008736 1 1.35 0.15 visionado 0.9800563178675208\n```\n\nThe timing information in the CTM is made up.\n\nWith `pctm`, the output is a \"pseudo-CTM\", where the confidence follows after every token, e.g.:\n```\nrtve2020_00000000000000000BR-C2!0008099-0008170 ay 0.4045044519729132\nrtve2020_00000000000000000BR-C2!0008285-0008422 me 0.7169367774080452 dejo 0.7991855335146294 irene 0.9938079240372626\nrtve2020_00000000000000000BR-C2!0008450-0008736 creo 1.0 que 1.0 querr\u00e1s 0.9921967974603854 un 1.0 poco 1.0 de 1.0 intimidad 1.0 para 1.0 este 1.0 visionado 0.9421039825750096\nr\n```\n",
"bugtrack_url": null,
"license": "MIT License Copyright (c) 2023 BUT Speech@FIT Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the \"Software\"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ",
"summary": "Toolkit for obtaining word-level confidences",
"version": "0.1.1",
"project_urls": {
"repository": "https://github.com/BUTSpeechFIT/hystoc"
},
"split_keywords": [
"confidence estimation",
"asr"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "24400b1bbe17b363edf3351a13a19936f6f4e7a343f77bd8a522963f49c66b7c",
"md5": "c206a241fe6f79ac7740976249658e01",
"sha256": "f7d7652e0046920cf7a8f8f5b697bfdd83863f7e571d97f794c692838e7069be"
},
"downloads": -1,
"filename": "hystoc-0.1.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "c206a241fe6f79ac7740976249658e01",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.6",
"size": 10670,
"upload_time": "2023-05-12T19:11:45",
"upload_time_iso_8601": "2023-05-12T19:11:45.788084Z",
"url": "https://files.pythonhosted.org/packages/24/40/0b1bbe17b363edf3351a13a19936f6f4e7a343f77bd8a522963f49c66b7c/hystoc-0.1.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "267c4e9266dda2819b2b621541c88e78ded6f968484e4dfb898339c7af9909a6",
"md5": "ed00cc23e8d4394120bce29ff557f846",
"sha256": "c87106abf39f6a8ab1dd505a22afb2c6f75d8bc6da6c627508e6349a02666f81"
},
"downloads": -1,
"filename": "hystoc-0.1.1.tar.gz",
"has_sig": false,
"md5_digest": "ed00cc23e8d4394120bce29ff557f846",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.6",
"size": 10357,
"upload_time": "2023-05-12T19:11:48",
"upload_time_iso_8601": "2023-05-12T19:11:48.431510Z",
"url": "https://files.pythonhosted.org/packages/26/7c/4e9266dda2819b2b621541c88e78ded6f968484e4dfb898339c7af9909a6/hystoc-0.1.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-05-12 19:11:48",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "BUTSpeechFIT",
"github_project": "hystoc",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "hystoc"
}