# I "Hate" Papers
**Create easily readable versions of papers via OpenAI**
I often need to read a paper to provide background on a related topic.
In these cases the technical depth of a paper can be a major obstacle.
So I created I Hate Papers to create easily digestible versions of
academic research.
Currently works with:
* An arXiv paper ID
* A local `.tex` file
* A local `.md` file
* A local `.html` file (experimental)
# Installation
pip install i-hate-papers
# Example use
# First set your OpenAI API key
❱ export OPENAI_API_KEY=...
# Summarise a arXiv paper ID
❱ i_hate_papers 2106.09685
# Summarise a latex file
❱ i_hate_papers path/to/some-paper.tex
# Summarise a html file
❱ i_hate_papers path/to/some-paper.html
# Example output
* [Example HTML](https://adamcharnock.github.io/i-hate-papers/examples/summary-2106.09685-d1-gpt-3.5-turbo-16k.html) (includes rendered math using MathJax)
* [Example Markdown](https://github.com/adamcharnock/i-hate-papers/blob/main/examples/summary-2106.09685-d1-gpt-3.5-turbo-16k.md)
# Reference
❱ i_hate_papers --help
usage: i_hate_papers [-h] [--verbosity {0,1,2}] [--no-input] [--no-html] [--no-open] [--no-footer]
[--no-glossary] [--detail-level {0,1,2}] [--model MODEL] INPUT
Summarise an academic paper
You must set the OPENAI_API_KEY environment variable using your OpenAi.com API key
positional arguments:
INPUT arXiv paper ID (example: 1234.56789) or path to a .tex/.html/.md file
options:
-h, --help show this help message and exit
--verbosity {0,1,2} Set the logging verbosity (0 = quiet, 1 = info logging, 2 = debug logging). Default is 1
--no-input Don't prompt for file selection, just use the largest tex file
--no-html Skip HTML file generation
--no-open Don't open the HTML file when complete (macOS only)
--no-footer Don't include a footer containing metadata
--no-glossary Don't include a glossary
--detail-level {0,1,2}
How detailed should the summary be? (0 = minimal detail, 1 = normal, 2 = more detail)
--model MODEL What model to use to generate the summaries
# Release process
For internal use:
export VERSION=0.1.1
poetry version $VERSION
git ci -a -m "Releasing version $VERSION"
git tag "v$VERSION"
git push origin main refs/tags/v$VERSION
poetry publish --build
Raw data
{
"_id": null,
"home_page": "https://github.com/adamcharnock/i-hate-papers",
"name": "i-hate-papers",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.9,<4.0",
"maintainer_email": "",
"keywords": "",
"author": "Adam Charnock",
"author_email": "adam@adamcharnock.com",
"download_url": "https://files.pythonhosted.org/packages/b0/4e/d7c2f5b34e84db5d343560ae5daa3a14fd17704d4928ee8d24f4845c3620/i_hate_papers-0.2.1.tar.gz",
"platform": null,
"description": "# I \"Hate\" Papers\n\n**Create easily readable versions of papers via OpenAI**\n\nI often need to read a paper to provide background on a related topic. \nIn these cases the technical depth of a paper can be a major obstacle.\nSo I created I Hate Papers to create easily digestible versions of \nacademic research.\n\nCurrently works with:\n\n* An arXiv paper ID\n* A local `.tex` file\n* A local `.md` file\n* A local `.html` file (experimental)\n\n# Installation\n\n pip install i-hate-papers\n\n# Example use\n \n # First set your OpenAI API key\n \u2771 export OPENAI_API_KEY=...\n \n # Summarise a arXiv paper ID\n \u2771 i_hate_papers 2106.09685\n \n # Summarise a latex file\n \u2771 i_hate_papers path/to/some-paper.tex\n \n # Summarise a html file\n \u2771 i_hate_papers path/to/some-paper.html\n\n# Example output\n\n* [Example HTML](https://adamcharnock.github.io/i-hate-papers/examples/summary-2106.09685-d1-gpt-3.5-turbo-16k.html) (includes rendered math using MathJax)\n* [Example Markdown](https://github.com/adamcharnock/i-hate-papers/blob/main/examples/summary-2106.09685-d1-gpt-3.5-turbo-16k.md)\n\n# Reference\n\n \u2771 i_hate_papers --help\n usage: i_hate_papers [-h] [--verbosity {0,1,2}] [--no-input] [--no-html] [--no-open] [--no-footer] \n [--no-glossary] [--detail-level {0,1,2}] [--model MODEL] INPUT\n \n Summarise an academic paper\n \n You must set the OPENAI_API_KEY environment variable using your OpenAi.com API key\n \n positional arguments:\n INPUT arXiv paper ID (example: 1234.56789) or path to a .tex/.html/.md file\n \n options:\n -h, --help show this help message and exit\n --verbosity {0,1,2} Set the logging verbosity (0 = quiet, 1 = info logging, 2 = debug logging). Default is 1\n --no-input Don't prompt for file selection, just use the largest tex file\n --no-html Skip HTML file generation\n --no-open Don't open the HTML file when complete (macOS only)\n --no-footer Don't include a footer containing metadata\n --no-glossary Don't include a glossary\n --detail-level {0,1,2}\n How detailed should the summary be? (0 = minimal detail, 1 = normal, 2 = more detail)\n --model MODEL What model to use to generate the summaries\n\n# Release process\n\nFor internal use:\n\n export VERSION=0.1.1\n poetry version $VERSION\n git ci -a -m \"Releasing version $VERSION\"\n git tag \"v$VERSION\"\n git push origin main refs/tags/v$VERSION\n poetry publish --build",
"bugtrack_url": null,
"license": "MIT",
"summary": "Create easily readable versions of academic papers via OpenAI",
"version": "0.2.1",
"project_urls": {
"Homepage": "https://github.com/adamcharnock/i-hate-papers"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "37ded129f420db65a26f7cb25df0522e2f542ba9a76cb4dc78946e232be1f2c6",
"md5": "ad6570ad0232a610e256a579aaa5a2e2",
"sha256": "270cf4a6465cdd615106f0ebe035e70f8de777d3901687ddbce52bdcfcd405e3"
},
"downloads": -1,
"filename": "i_hate_papers-0.2.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "ad6570ad0232a610e256a579aaa5a2e2",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.9,<4.0",
"size": 13351,
"upload_time": "2023-09-03T10:45:11",
"upload_time_iso_8601": "2023-09-03T10:45:11.601422Z",
"url": "https://files.pythonhosted.org/packages/37/de/d129f420db65a26f7cb25df0522e2f542ba9a76cb4dc78946e232be1f2c6/i_hate_papers-0.2.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "b04ed7c2f5b34e84db5d343560ae5daa3a14fd17704d4928ee8d24f4845c3620",
"md5": "bb7d99479aaa7ea52fc96c6735097ee6",
"sha256": "749eebce70994700943b74287b0ab9e75f93a061dcd4c49aa8bdbe50cfec1aa1"
},
"downloads": -1,
"filename": "i_hate_papers-0.2.1.tar.gz",
"has_sig": false,
"md5_digest": "bb7d99479aaa7ea52fc96c6735097ee6",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.9,<4.0",
"size": 11297,
"upload_time": "2023-09-03T10:45:13",
"upload_time_iso_8601": "2023-09-03T10:45:13.066685Z",
"url": "https://files.pythonhosted.org/packages/b0/4e/d7c2f5b34e84db5d343560ae5daa3a14fd17704d4928ee8d24f4845c3620/i_hate_papers-0.2.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-09-03 10:45:13",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "adamcharnock",
"github_project": "i-hate-papers",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "i-hate-papers"
}