Data sets, functions and scripts with examples to implement online estimation methods for the irregularly observed autoregressive (iAR) model (Eyheramendy et al.(2018) <doi:10.1093/mnras/sty2487>). The online learning algorithms implemented are: gradient descent (IAR_OGD), Newton-step (IAR-ONS) and Kalman filter recursions (IAR-OBR).
Raw data
{
"_id": null,
"home_page": "https://github.com/felipeelorrieta/Onlineiar",
"name": "iAROnline",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "irregulary observed time series,autoregressive,online estimation methods",
"author": "Felipe Elorrieta",
"author_email": "<felipe.elorrieta@usach.cl>",
"download_url": "https://files.pythonhosted.org/packages/69/0c/98b1fb18ffdd7180dd7943c5f1df82baab6e86b15d1efb8bad0f69760eef/iAROnline-0.0.3.tar.gz",
"platform": null,
"description": "Data sets, functions and scripts with examples to implement online estimation methods for the irregularly observed autoregressive (iAR) model (Eyheramendy et al.(2018) <doi:10.1093/mnras/sty2487>). The online learning algorithms implemented are: gradient descent (IAR_OGD), Newton-step (IAR-ONS) and Kalman filter recursions (IAR-OBR).",
"bugtrack_url": null,
"license": "MIT",
"summary": "Online estimation methods for the irregularly observed autoregressive (iAR) model",
"version": "0.0.3",
"split_keywords": [
"irregulary observed time series",
"autoregressive",
"online estimation methods"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "7372315df2ae13a3ff116dcd48d3f91156a309fada359e18b457c80831e56d80",
"md5": "ca1c9c9f338a8f2b31f6302809f5976a",
"sha256": "a88d4b897a1979840eb076c0ea74e47af0a99846b149dea265f6705ee33797b1"
},
"downloads": -1,
"filename": "iAROnline-0.0.3-py3.7.egg",
"has_sig": false,
"md5_digest": "ca1c9c9f338a8f2b31f6302809f5976a",
"packagetype": "bdist_egg",
"python_version": "0.0.3",
"requires_python": null,
"size": 8955,
"upload_time": "2023-02-07T17:52:58",
"upload_time_iso_8601": "2023-02-07T17:52:58.080715Z",
"url": "https://files.pythonhosted.org/packages/73/72/315df2ae13a3ff116dcd48d3f91156a309fada359e18b457c80831e56d80/iAROnline-0.0.3-py3.7.egg",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "690c98b1fb18ffdd7180dd7943c5f1df82baab6e86b15d1efb8bad0f69760eef",
"md5": "930f785c96e5e551b499d63df6527fe2",
"sha256": "c6e5baaa755ac7f4bbd85614d2019f96c9c73a30ae34854d7f372d7eb7a43991"
},
"downloads": -1,
"filename": "iAROnline-0.0.3.tar.gz",
"has_sig": false,
"md5_digest": "930f785c96e5e551b499d63df6527fe2",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 4409,
"upload_time": "2023-02-07T17:53:00",
"upload_time_iso_8601": "2023-02-07T17:53:00.523467Z",
"url": "https://files.pythonhosted.org/packages/69/0c/98b1fb18ffdd7180dd7943c5f1df82baab6e86b15d1efb8bad0f69760eef/iAROnline-0.0.3.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-02-07 17:53:00",
"github": true,
"gitlab": false,
"bitbucket": false,
"github_user": "felipeelorrieta",
"github_project": "Onlineiar",
"lcname": "iaronline"
}