| Name | icet JSON |
| Version |
3.2
JSON |
| download |
| home_page | None |
| Summary | A Pythonic approach to cluster expansions |
| upload_time | 2025-10-26 21:52:33 |
| maintainer | The icet developer team |
| docs_url | None |
| author | The icet developer team |
| requires_python | >=3.9 |
| license | None |
| keywords |
chemistry
physics
scientific
|
| VCS |
|
| bugtrack_url |
|
| requirements |
No requirements were recorded.
|
| Travis-CI |
No Travis.
|
| coveralls test coverage |
No coveralls.
|
icet
====
**icet** is a tool for the construction and sampling of alloy cluster expansions.
A detailed description of the functionality provided as well as an extensive tutorial can be found in the `user guide <https://icet.materialsmodeling.org/>`_.
**icet** is written in Python, which allows easy integration with countless first-principles codes and analysis tools accessible from Python, and allows for a simple and intuitive user interface.
All computationally demanding parts are, however, written in C++ providing performance while maintaining portability.
The following snippet illustrates how one can train a cluster expansion:
.. code-block:: python
cs = ClusterSpace(primitive_cell, cutoffs, species)
sc = StructureContainer(cs)
for structure in training_structures:
sc.add_structure(structure)
opt = Optimizer(sc.get_fit_data())
opt.train()
ce = ClusterExpansion(cs, opt.parameters)
Afterwards the cluster expansion can be used, e.g., for finding ground state structures or sampled via Monte Carlo simulations.
For questions and help please use the `icet discussion forum on matsci.org <https://matsci.org/icet>`_.
**icet** and its development are hosted on `gitlab <https://gitlab.com/materials-modeling/icet>`_.
Installation
------------
**icet** can be installed using `pip <https://pypi.org/project/icet/>`_::
pip3 install icet --user
or via `conda <https://anaconda.org/conda-forge/icet>`_::
conda install -c conda-forge icet
Installation via `pip` requires a C++11 compliant compiler.
Please consult the `installation section of the user guide <https://icet.materialsmodeling.org/installation.html>`_ for details.
**icet** is based on Python3 and invokes functionality from other Python libraries including
`ase <https://wiki.fysik.dtu.dk/ase>`_,
`pandas <https://pandas.pydata.org/>`_,
`numba <https://numba.pydata.org/>`_,
`numpy <http://www.numpy.org/>`_,
`scipy <https://www.scipy.org/>`_,
`spglib <https://atztogo.github.io/spglib/>`_, and
`trainstation <https://trainstation.materialsmodeling.org/>`_.
Credits
-------
**icet** has been developed at the `Department of Physics <https://www.chalmers.se/en/departments/physics/Pages/default.aspx>`_ of `Chalmers University of Technology <https://www.chalmers.se/>`_ (Gothenburg, Sweden) and the `Data and Software Management Center <https://europeanspallationsource.se/data-management-software>`_ at the European Spallation Source (Copenhagen, Denmark).
When using **icet** in your research please cite
| M. Ångqvist, W. A. Muñoz, J. M. Rahm, E. Fransson, C. Durniak, P. Rozyczko, T. H. Rod, and P. Erhart
| *ICET – A Python Library for Constructing and Sampling Alloy Cluster Expansions*
| Adv. Theory. Sim., 1900015 (2019)
| `doi: 10.1002/adts.201900015 <https://doi.org/10.1002/adts.201900015>`_
Also consult the `credits <https://icet.materialsmodeling.org/credits>`_ page of the documentation for additional references.
Raw data
{
"_id": null,
"home_page": null,
"name": "icet",
"maintainer": "The icet developer team",
"docs_url": null,
"requires_python": ">=3.9",
"maintainer_email": null,
"keywords": "chemistry, physics, scientific",
"author": "The icet developer team",
"author_email": null,
"download_url": "https://files.pythonhosted.org/packages/1c/6e/352cb83107d989631d61b94358f9310fab93cc715fad18bfe26c84417321/icet-3.2.tar.gz",
"platform": null,
"description": "icet\n====\n\n**icet** is a tool for the construction and sampling of alloy cluster expansions.\nA detailed description of the functionality provided as well as an extensive tutorial can be found in the `user guide <https://icet.materialsmodeling.org/>`_.\n\n**icet** is written in Python, which allows easy integration with countless first-principles codes and analysis tools accessible from Python, and allows for a simple and intuitive user interface.\nAll computationally demanding parts are, however, written in C++ providing performance while maintaining portability.\nThe following snippet illustrates how one can train a cluster expansion:\n\n.. code-block:: python\n\n cs = ClusterSpace(primitive_cell, cutoffs, species)\n sc = StructureContainer(cs)\n for structure in training_structures:\n sc.add_structure(structure)\n opt = Optimizer(sc.get_fit_data())\n opt.train()\n ce = ClusterExpansion(cs, opt.parameters)\n\nAfterwards the cluster expansion can be used, e.g., for finding ground state structures or sampled via Monte Carlo simulations.\n\nFor questions and help please use the `icet discussion forum on matsci.org <https://matsci.org/icet>`_.\n**icet** and its development are hosted on `gitlab <https://gitlab.com/materials-modeling/icet>`_.\n\n\nInstallation\n------------\n\n**icet** can be installed using `pip <https://pypi.org/project/icet/>`_::\n\n pip3 install icet --user\n\nor via `conda <https://anaconda.org/conda-forge/icet>`_::\n\n conda install -c conda-forge icet\n\nInstallation via `pip` requires a C++11 compliant compiler.\nPlease consult the `installation section of the user guide <https://icet.materialsmodeling.org/installation.html>`_ for details.\n\n**icet** is based on Python3 and invokes functionality from other Python libraries including\n`ase <https://wiki.fysik.dtu.dk/ase>`_,\n`pandas <https://pandas.pydata.org/>`_,\n`numba <https://numba.pydata.org/>`_,\n`numpy <http://www.numpy.org/>`_,\n`scipy <https://www.scipy.org/>`_,\n`spglib <https://atztogo.github.io/spglib/>`_, and\n`trainstation <https://trainstation.materialsmodeling.org/>`_.\n\n\nCredits\n-------\n\n**icet** has been developed at the `Department of Physics <https://www.chalmers.se/en/departments/physics/Pages/default.aspx>`_ of `Chalmers University of Technology <https://www.chalmers.se/>`_ (Gothenburg, Sweden) and the `Data and Software Management Center <https://europeanspallationsource.se/data-management-software>`_ at the European Spallation Source (Copenhagen, Denmark).\n\nWhen using **icet** in your research please cite\n\n| M. \u00c5ngqvist, W. A. Mu\u00f1oz, J. M. Rahm, E. Fransson, C. Durniak, P. Rozyczko, T. H. Rod, and P. Erhart\n| *ICET \u2013 A Python Library for Constructing and Sampling Alloy Cluster Expansions*\n| Adv. Theory. Sim., 1900015 (2019)\n| `doi: 10.1002/adts.201900015 <https://doi.org/10.1002/adts.201900015>`_\n\nAlso consult the `credits <https://icet.materialsmodeling.org/credits>`_ page of the documentation for additional references.\n",
"bugtrack_url": null,
"license": null,
"summary": "A Pythonic approach to cluster expansions",
"version": "3.2",
"project_urls": {
"Documentation": "https://icet.materialsmodeling.org",
"Repository": "https://gitlab.com/materials-modeling/icet/"
},
"split_keywords": [
"chemistry",
" physics",
" scientific"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "1c6e352cb83107d989631d61b94358f9310fab93cc715fad18bfe26c84417321",
"md5": "616d8f7d155b2321aa17646af93ef686",
"sha256": "858fd1b2193b77f2fafb32b7cf9ea733d3e71fe2dbf75252679c12f72bf9470b"
},
"downloads": -1,
"filename": "icet-3.2.tar.gz",
"has_sig": false,
"md5_digest": "616d8f7d155b2321aa17646af93ef686",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.9",
"size": 1857889,
"upload_time": "2025-10-26T21:52:33",
"upload_time_iso_8601": "2025-10-26T21:52:33.380844Z",
"url": "https://files.pythonhosted.org/packages/1c/6e/352cb83107d989631d61b94358f9310fab93cc715fad18bfe26c84417321/icet-3.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-10-26 21:52:33",
"github": false,
"gitlab": true,
"bitbucket": false,
"codeberg": false,
"gitlab_user": "materials-modeling",
"gitlab_project": "icet",
"lcname": "icet"
}