<h1 align="center"> 📈 Ickle - Data Analysis Library</h1>
<h3 align="center">
A tiny DataFrame, statistics and analysis library for Python
</h3>
<div align="center">
[](https://badge.fury.io/py/ickle)
[](https://pepy.tech/project/ickle)
[](https://pypi.org/project/ickle/)
</div>
## Installation
Ickle can be installed via pip through PyPi
```
pip install ickle
```
## Features
- [x] DataFrame along with Visual Representation
- [x] Basic properties (len, columns, shape, etc)
- [x] Subset Selection
- [x] Basic Methods (head, tail)
- [x] Aggregation Methods (min, max, median, sum, etc)
- [x] Non-Aggregation Methods (abs, copy, clip, cummin, etc)
- [x] Additional Methods (isna, count, unique, etc)
- [x] String-Only Methods (capitalize, center, count, find, etc)
- [x] Pivot Table
- [ ] CSV
- [x] read_csv
- [ ] to_csv
- [ ] Excel
- [ ] read_excel
- [ ] to_excel
... and more. 🚀 Checkout [PATH.md](PATH.md) to see the roadmap.
## How To Contribute?
See [CONTRIBUTION.md](CONTRIBUTION.md) to know more.
## Getting Started
### DataFrame
A DataFrame holds two dimensional heterogenous data. It accepts dictionary as input, with Numpy arrays as values and strings as column names.
```py
import numpy as np
import ickle as ick
name = np.array(['John', 'Sam', 'Tina', 'Josh', 'Jack', 'Jill'])
place = np.array(['Kolkata', 'Mumbai', 'Delhi', 'Mumbai', 'Mumbai', 'Mumbai'])
weight = np.array([57, 70, 54, 59, 62, 70])
married = np.array([True, False, True, False, False, False])
data = {'name': name, 'place': place, 'weight': weight, 'married': married}
df = ick.DataFrame(data)
```
## Documentation
Read the documentation <a href="https://nbviewer.org/github/karishmashuklaa/ickle/blob/master/Ickle%20Documentation.ipynb">here</a>
Raw data
{
"_id": null,
"home_page": "https://github.com/karishmashuklaa/ickle",
"name": "ickle",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "data-analysis,numpy,data,python,library,pandas,ickle,datascience",
"author": "Karishma Shukla",
"author_email": "karishmashuklaa@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/35/05/2bcfc32f43b1fce4dcd5b1e23d8c4dc4a56d19297ac7e4c9daa886436f37/ickle-1.0.4.tar.gz",
"platform": null,
"description": "<h1 align=\"center\"> \u00f0\u0178\u201c\u02c6 Ickle - Data Analysis Library</h1>\r\n\r\n<h3 align=\"center\">\r\n A tiny DataFrame, statistics and analysis library for Python\r\n</h3>\r\n\r\n<div align=\"center\">\r\n\r\n[](https://badge.fury.io/py/ickle)\r\n[](https://pepy.tech/project/ickle)\r\n[](https://pypi.org/project/ickle/)\r\n \r\n</div>\r\n\r\n## Installation\r\n\r\nIckle can be installed via pip through PyPi\r\n\r\n```\r\npip install ickle\r\n```\r\n\r\n## Features\r\n- [x] DataFrame along with Visual Representation\r\n- [x] Basic properties (len, columns, shape, etc)\r\n- [x] Subset Selection\r\n- [x] Basic Methods (head, tail)\r\n- [x] Aggregation Methods (min, max, median, sum, etc)\r\n- [x] Non-Aggregation Methods (abs, copy, clip, cummin, etc)\r\n- [x] Additional Methods (isna, count, unique, etc)\r\n- [x] String-Only Methods (capitalize, center, count, find, etc)\r\n- [x] Pivot Table\r\n- [ ] CSV\r\n - [x] read_csv\r\n - [ ] to_csv\r\n- [ ] Excel\r\n - [ ] read_excel\r\n - [ ] to_excel\r\n \r\n... and more. \u00f0\u0178\u0161\u20ac Checkout [PATH.md](PATH.md) to see the roadmap.\r\n\r\n## How To Contribute?\r\nSee [CONTRIBUTION.md](CONTRIBUTION.md) to know more.\r\n\r\n## Getting Started\r\n\r\n### DataFrame\r\nA DataFrame holds two dimensional heterogenous data. It accepts dictionary as input, with Numpy arrays as values and strings as column names.\r\n\r\n```py\r\nimport numpy as np\r\nimport ickle as ick\r\n\r\nname = np.array(['John', 'Sam', 'Tina', 'Josh', 'Jack', 'Jill'])\r\nplace = np.array(['Kolkata', 'Mumbai', 'Delhi', 'Mumbai', 'Mumbai', 'Mumbai'])\r\nweight = np.array([57, 70, 54, 59, 62, 70])\r\nmarried = np.array([True, False, True, False, False, False])\r\n\r\ndata = {'name': name, 'place': place, 'weight': weight, 'married': married}\r\ndf = ick.DataFrame(data)\r\n```\r\n\r\n## Documentation\r\n\r\nRead the documentation <a href=\"https://nbviewer.org/github/karishmashuklaa/ickle/blob/master/Ickle%20Documentation.ipynb\">here</a>\r\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "\ud83d\udd0d Experimental DataFrame, statistics and analysis library for Python",
"version": "1.0.4",
"project_urls": {
"Homepage": "https://github.com/karishmashuklaa/ickle"
},
"split_keywords": [
"data-analysis",
"numpy",
"data",
"python",
"library",
"pandas",
"ickle",
"datascience"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "89231c47c05d1dc61d8790d03ddf81ecf7243546e1d440181435c5785c84df09",
"md5": "253e6ee712201919797ec40919aa043b",
"sha256": "f0b3d1ff68f7929cff4738720bd0ac0e1b328129020abd5eb058e29b7e5b2ec2"
},
"downloads": -1,
"filename": "ickle-1.0.4-py3-none-any.whl",
"has_sig": false,
"md5_digest": "253e6ee712201919797ec40919aa043b",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 16627,
"upload_time": "2023-05-21T14:11:02",
"upload_time_iso_8601": "2023-05-21T14:11:02.950015Z",
"url": "https://files.pythonhosted.org/packages/89/23/1c47c05d1dc61d8790d03ddf81ecf7243546e1d440181435c5785c84df09/ickle-1.0.4-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "35052bcfc32f43b1fce4dcd5b1e23d8c4dc4a56d19297ac7e4c9daa886436f37",
"md5": "1d9371a927f7a531763e8bb9e6a2fa10",
"sha256": "6c748ef4aaed67057678ebec3cad402cbbb7889245db23d64bc741333cf0c22d"
},
"downloads": -1,
"filename": "ickle-1.0.4.tar.gz",
"has_sig": false,
"md5_digest": "1d9371a927f7a531763e8bb9e6a2fa10",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 17454,
"upload_time": "2023-05-21T14:11:05",
"upload_time_iso_8601": "2023-05-21T14:11:05.524081Z",
"url": "https://files.pythonhosted.org/packages/35/05/2bcfc32f43b1fce4dcd5b1e23d8c4dc4a56d19297ac7e4c9daa886436f37/ickle-1.0.4.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-05-21 14:11:05",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "karishmashuklaa",
"github_project": "ickle",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "ickle"
}