This repository contains a Python implementation of the IDPettis algorithm, which is designed to estimate the intrinsic dimensionality of a dataset. The intrinsic dimensionality represents the minimum number of variables required to approximate the structure of the dataset.
Raw data
{
"_id": null,
"home_page": "",
"name": "idPettis-By-Bisca",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "IDPettis,intrinsic dimensionality estimation,dimensionality reduction,data analysis,machine learning,data science,nearest neighbors,high-dimensional data,dimensionality analysis,scientific computing,helix dataset,pdist,scipy,numpy,matplotlib,algorithm",
"author": "Eng. Alberto Biscalchin",
"author_email": "biscalchin.mau.se@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/e9/af/077e5366273137b05346b8b5af353c848faa55d066f51168507b67f31e42/idPettis_By_Bisca-0.0.3.tar.gz",
"platform": null,
"description": "This repository contains a Python implementation of the IDPettis algorithm, which is designed to estimate the intrinsic dimensionality of a dataset. The intrinsic dimensionality represents the minimum number of variables required to approximate the structure of the dataset.\r\n",
"bugtrack_url": null,
"license": "",
"summary": "IDPettis Intrinsic Dimensionality Estimation by Alberto Biscalchin",
"version": "0.0.3",
"project_urls": null,
"split_keywords": [
"idpettis",
"intrinsic dimensionality estimation",
"dimensionality reduction",
"data analysis",
"machine learning",
"data science",
"nearest neighbors",
"high-dimensional data",
"dimensionality analysis",
"scientific computing",
"helix dataset",
"pdist",
"scipy",
"numpy",
"matplotlib",
"algorithm"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "b8f90d609d4a06199110a40a783bc434e14d354bf22d129e5d783c965aff43c2",
"md5": "04d7f5fac78c726b55d4c0a5efd4317b",
"sha256": "158140c4d222231dbba48c21c0d764519f1e69706e9fc82b0180e37488b76c84"
},
"downloads": -1,
"filename": "idPettis_By_Bisca-0.0.3-py3-none-any.whl",
"has_sig": false,
"md5_digest": "04d7f5fac78c726b55d4c0a5efd4317b",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 15295,
"upload_time": "2024-02-08T19:24:14",
"upload_time_iso_8601": "2024-02-08T19:24:14.931047Z",
"url": "https://files.pythonhosted.org/packages/b8/f9/0d609d4a06199110a40a783bc434e14d354bf22d129e5d783c965aff43c2/idPettis_By_Bisca-0.0.3-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "e9af077e5366273137b05346b8b5af353c848faa55d066f51168507b67f31e42",
"md5": "208355cfaeaa6fb6e1cb05df04cbaae9",
"sha256": "f037aaa07ca47a73024aa8a4e299d99156a38f46ec599b8643a5b8da01fb78d4"
},
"downloads": -1,
"filename": "idPettis_By_Bisca-0.0.3.tar.gz",
"has_sig": false,
"md5_digest": "208355cfaeaa6fb6e1cb05df04cbaae9",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 15488,
"upload_time": "2024-02-08T19:24:15",
"upload_time_iso_8601": "2024-02-08T19:24:15.945770Z",
"url": "https://files.pythonhosted.org/packages/e9/af/077e5366273137b05346b8b5af353c848faa55d066f51168507b67f31e42/idPettis_By_Bisca-0.0.3.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-02-08 19:24:15",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "idpettis-by-bisca"
}