idPettis-By-Bisca


NameidPettis-By-Bisca JSON
Version 0.0.3 PyPI version JSON
download
home_page
SummaryIDPettis Intrinsic Dimensionality Estimation by Alberto Biscalchin
upload_time2024-02-08 19:24:15
maintainer
docs_urlNone
authorEng. Alberto Biscalchin
requires_python
license
keywords idpettis intrinsic dimensionality estimation dimensionality reduction data analysis machine learning data science nearest neighbors high-dimensional data dimensionality analysis scientific computing helix dataset pdist scipy numpy matplotlib algorithm
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            This repository contains a Python implementation of the IDPettis algorithm, which is designed to estimate the intrinsic dimensionality of a dataset. The intrinsic dimensionality represents the minimum number of variables required to approximate the structure of the dataset.

            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "idPettis-By-Bisca",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "IDPettis,intrinsic dimensionality estimation,dimensionality reduction,data analysis,machine learning,data science,nearest neighbors,high-dimensional data,dimensionality analysis,scientific computing,helix dataset,pdist,scipy,numpy,matplotlib,algorithm",
    "author": "Eng. Alberto Biscalchin",
    "author_email": "biscalchin.mau.se@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/e9/af/077e5366273137b05346b8b5af353c848faa55d066f51168507b67f31e42/idPettis_By_Bisca-0.0.3.tar.gz",
    "platform": null,
    "description": "This repository contains a Python implementation of the IDPettis algorithm, which is designed to estimate the intrinsic dimensionality of a dataset. The intrinsic dimensionality represents the minimum number of variables required to approximate the structure of the dataset.\r\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "IDPettis Intrinsic Dimensionality Estimation by Alberto Biscalchin",
    "version": "0.0.3",
    "project_urls": null,
    "split_keywords": [
        "idpettis",
        "intrinsic dimensionality estimation",
        "dimensionality reduction",
        "data analysis",
        "machine learning",
        "data science",
        "nearest neighbors",
        "high-dimensional data",
        "dimensionality analysis",
        "scientific computing",
        "helix dataset",
        "pdist",
        "scipy",
        "numpy",
        "matplotlib",
        "algorithm"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "b8f90d609d4a06199110a40a783bc434e14d354bf22d129e5d783c965aff43c2",
                "md5": "04d7f5fac78c726b55d4c0a5efd4317b",
                "sha256": "158140c4d222231dbba48c21c0d764519f1e69706e9fc82b0180e37488b76c84"
            },
            "downloads": -1,
            "filename": "idPettis_By_Bisca-0.0.3-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "04d7f5fac78c726b55d4c0a5efd4317b",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 15295,
            "upload_time": "2024-02-08T19:24:14",
            "upload_time_iso_8601": "2024-02-08T19:24:14.931047Z",
            "url": "https://files.pythonhosted.org/packages/b8/f9/0d609d4a06199110a40a783bc434e14d354bf22d129e5d783c965aff43c2/idPettis_By_Bisca-0.0.3-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "e9af077e5366273137b05346b8b5af353c848faa55d066f51168507b67f31e42",
                "md5": "208355cfaeaa6fb6e1cb05df04cbaae9",
                "sha256": "f037aaa07ca47a73024aa8a4e299d99156a38f46ec599b8643a5b8da01fb78d4"
            },
            "downloads": -1,
            "filename": "idPettis_By_Bisca-0.0.3.tar.gz",
            "has_sig": false,
            "md5_digest": "208355cfaeaa6fb6e1cb05df04cbaae9",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 15488,
            "upload_time": "2024-02-08T19:24:15",
            "upload_time_iso_8601": "2024-02-08T19:24:15.945770Z",
            "url": "https://files.pythonhosted.org/packages/e9/af/077e5366273137b05346b8b5af353c848faa55d066f51168507b67f31e42/idPettis_By_Bisca-0.0.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-02-08 19:24:15",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "idpettis-by-bisca"
}
        
Elapsed time: 0.42226s