ids-iforest


Nameids-iforest JSON
Version 0.1.0 PyPI version JSON
download
home_pageNone
SummaryNetwork intrusion detection system based on Isolation Forest and PyShark
upload_time2025-08-24 13:43:19
maintainerNone
docs_urlNone
authorNone
requires_python>=3.10
licenseNone
keywords ids machine learning isolation forest network security
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # IDS-IForest

Network intrusion detection system based on Isolation Forest and PyShark.

## Overview

This package provides tools for network traffic analysis and anomaly detection using machine learning. It uses the Isolation Forest algorithm to detect unusual network behavior that may indicate potential security threats.

## Features

- Train anomaly detection models on network traffic data
- Detect anomalies in live network traffic or PCAP files
- Convert PCAP files to flow-based CSV format
- Generate synthetic datasets for testing

## Installation

```bash
pip install ids-iforest
```

## Usage

### Training a model

```bash
ids-iforest-train --input data/train.csv --output models/ids_iforest.joblib
```

### Detecting anomalies

```bash
ids-iforest-detect --model models/ids_iforest.joblib --interface eth0
```

### Converting PCAP to CSV

```bash
ids-iforest-pcap2csv --input capture.pcap --output flows.csv
```

## License

This project is licensed under the MIT License - see the LICENSE file for details.

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "ids-iforest",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": null,
    "keywords": "ids, machine learning, isolation forest, network, security",
    "author": null,
    "author_email": "Rachid Bellaali <bellaalirachid@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/e2/ce/d8439db1a0928fd2c53cefef91a98913829c62b0334fbd09319d98de13cf/ids_iforest-0.1.0.tar.gz",
    "platform": null,
    "description": "# IDS-IForest\n\nNetwork intrusion detection system based on Isolation Forest and PyShark.\n\n## Overview\n\nThis package provides tools for network traffic analysis and anomaly detection using machine learning. It uses the Isolation Forest algorithm to detect unusual network behavior that may indicate potential security threats.\n\n## Features\n\n- Train anomaly detection models on network traffic data\n- Detect anomalies in live network traffic or PCAP files\n- Convert PCAP files to flow-based CSV format\n- Generate synthetic datasets for testing\n\n## Installation\n\n```bash\npip install ids-iforest\n```\n\n## Usage\n\n### Training a model\n\n```bash\nids-iforest-train --input data/train.csv --output models/ids_iforest.joblib\n```\n\n### Detecting anomalies\n\n```bash\nids-iforest-detect --model models/ids_iforest.joblib --interface eth0\n```\n\n### Converting PCAP to CSV\n\n```bash\nids-iforest-pcap2csv --input capture.pcap --output flows.csv\n```\n\n## License\n\nThis project is licensed under the MIT License - see the LICENSE file for details.\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Network intrusion detection system based on Isolation Forest and PyShark",
    "version": "0.1.0",
    "project_urls": {
        "Documentation": "https://gitlab.com/rachiid007/network_traffic_analysis/-/blob/main/README.md",
        "Homepage": "https://gitlab.com/rachiid007/network_traffic_analysis"
    },
    "split_keywords": [
        "ids",
        " machine learning",
        " isolation forest",
        " network",
        " security"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "526b3203f92b22d571bbbeae7c1f896fb46b130489db78f15949a9765b9cf6dd",
                "md5": "e96516d05b2213d7d2aba238be9d17e8",
                "sha256": "704574ccc92ecf3274c32f96a148930132c646109f4656fe83ef60b64ef868d4"
            },
            "downloads": -1,
            "filename": "ids_iforest-0.1.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "e96516d05b2213d7d2aba238be9d17e8",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10",
            "size": 26717,
            "upload_time": "2025-08-24T13:43:18",
            "upload_time_iso_8601": "2025-08-24T13:43:18.468121Z",
            "url": "https://files.pythonhosted.org/packages/52/6b/3203f92b22d571bbbeae7c1f896fb46b130489db78f15949a9765b9cf6dd/ids_iforest-0.1.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "e2ced8439db1a0928fd2c53cefef91a98913829c62b0334fbd09319d98de13cf",
                "md5": "59b48568663ea8478f0bac484b31898e",
                "sha256": "6139545400b1faf0aa229163479a5a3f4dd89fbc8c11d0f7bfecf1d3bb9242af"
            },
            "downloads": -1,
            "filename": "ids_iforest-0.1.0.tar.gz",
            "has_sig": false,
            "md5_digest": "59b48568663ea8478f0bac484b31898e",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10",
            "size": 29985,
            "upload_time": "2025-08-24T13:43:19",
            "upload_time_iso_8601": "2025-08-24T13:43:19.690294Z",
            "url": "https://files.pythonhosted.org/packages/e2/ce/d8439db1a0928fd2c53cefef91a98913829c62b0334fbd09319d98de13cf/ids_iforest-0.1.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-08-24 13:43:19",
    "github": false,
    "gitlab": true,
    "bitbucket": false,
    "codeberg": false,
    "gitlab_user": "rachiid007",
    "gitlab_project": "network_traffic_analysis",
    "lcname": "ids-iforest"
}
        
Elapsed time: 1.63939s