ieseg-credscore


Nameieseg-credscore JSON
Version 0.23.12 PyPI version JSON
download
home_pagehttps://github.com/pnborchert
SummaryCredit Scoring - IESEG School of Management
upload_time2023-07-05 09:27:51
maintainer
docs_urlNone
authorPhilipp Borchert
requires_python
licenseMIT
keywords credit scoring ieseg
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <!-- HEADER -->
|  |  |
|---|---|
| <img src="https://www.ieseg.fr/wp-content/uploads/IESEG-Logo-2012-rgb.jpg" alt="drawing" width=100%/> | <span><br>Credit Scoring<br>Module<br>Class: 2022 & 2023</span> |

<!-- CONTENT -->

---

## Overview

- Odds based Grouping (OBG)
    - OBGEncoder

        - `pred_var`: Name of predictor variable. Values can be either continuous or categorical.
        - `target_var`: Name of binary target variable.

        .fit

        - `df`: DataFrame containing pred_var and target_var.
        - `max_delta`: max difference between odds for merging two levels. default: 0.05
        - `min_bins`: minimum number of bins. default: 3
        - `q`: number of quantiles when converting continuous variable to categorical. default: 10

        .transform

        - `df`: Transform pred_var based on fitted bins.
        - `impute`: Boolean indicating whether to impute missing values. default: False
        - `impute_value`: Category level to impute missing values with. default: 'Missing' or 'nan'

        .fit_transform

        - `df`: DataFrame containing pred_var and target_var. Transform pred_var based on fitted bins.

        >fit_dict: dictionary containing the matched category levels and fitted bins.

        >lookup: dictionary containing cutoff values for continuous variable (empty if pred_var is categorical).



- Weight of Evidence (WOE)

    - WOEEncoder

        - `pred_var`: Name of predictor variable.Values can be either continuous or categorical.
        - `target_var`: Name of binary target variable. 
        - `target_value`: Value indicating event. default: 1.

        .fit

        - `df`: DataFrame containing pred_var and target_var.
        - `stop_limit`: Stops WOE based merging of the predictor's classes/levels in case the resulting information value (IV) decreases more than (e.g. 0.05 = 5%) compared to the preceding binning step. stop_limit=0 will skip any WOE based merging. Increasing the stop_limit will simplify the binning solution and may avoid overfitting. Accepted value range: 0 to 0.5. default: 0.1.
        - `q`: number of quantiles when converting continuous variable to categorical. default: 10

        .transform

        - `df`: Transform pred_var based on fitted bins
        - `impute`: Boolean indicating whether to impute missing values. default: False
        - `impute_value`: Category level to impute missing values with. default: 'Missing' or 'nan'

        .fit_transform

        - `df`: DataFrame containing pred_var and target_var. Transform pred_var based on fitted bins.

        .test_limit

        - `df`: DataFrame containing pred_var and target_var to test stop limits at 1%, 2.5%, 5% and 10%.

        >fit_dict: dictionary containing the matched category levels and fitted bins.

        >lookup: dictionary containing cutoff values for continuous variable (empty if pred_var is categorical).

<br>

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/pnborchert",
    "name": "ieseg-credscore",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "Credit Scoring IESEG",
    "author": "Philipp Borchert",
    "author_email": "p.borchert@ieseg.fr",
    "download_url": "https://files.pythonhosted.org/packages/f4/5f/1aea2549175421123f37a37777ed2d28c5592ae1ce04150f3efeb4bda9e4/ieseg_credscore-0.23.12.tar.gz",
    "platform": null,
    "description": "<!-- HEADER -->\r\n|  |  |\r\n|---|---|\r\n| <img src=\"https://www.ieseg.fr/wp-content/uploads/IESEG-Logo-2012-rgb.jpg\" alt=\"drawing\" width=100%/> | <span><br>Credit Scoring<br>Module<br>Class: 2022 & 2023</span> |\r\n\r\n<!-- CONTENT -->\r\n\r\n---\r\n\r\n## Overview\r\n\r\n- Odds based Grouping (OBG)\r\n    - OBGEncoder\r\n\r\n        - `pred_var`: Name of predictor variable. Values can be either continuous or categorical.\r\n        - `target_var`: Name of binary target variable.\r\n\r\n        .fit\r\n\r\n        - `df`: DataFrame containing pred_var and target_var.\r\n        - `max_delta`: max difference between odds for merging two levels. default: 0.05\r\n        - `min_bins`: minimum number of bins. default: 3\r\n        - `q`: number of quantiles when converting continuous variable to categorical. default: 10\r\n\r\n        .transform\r\n\r\n        - `df`: Transform pred_var based on fitted bins.\r\n        - `impute`: Boolean indicating whether to impute missing values. default: False\r\n        - `impute_value`: Category level to impute missing values with. default: 'Missing' or 'nan'\r\n\r\n        .fit_transform\r\n\r\n        - `df`: DataFrame containing pred_var and target_var. Transform pred_var based on fitted bins.\r\n\r\n        >fit_dict: dictionary containing the matched category levels and fitted bins.\r\n\r\n        >lookup: dictionary containing cutoff values for continuous variable (empty if pred_var is categorical).\r\n\r\n\r\n\r\n- Weight of Evidence (WOE)\r\n\r\n    - WOEEncoder\r\n\r\n        - `pred_var`: Name of predictor variable.Values can be either continuous or categorical.\r\n        - `target_var`: Name of binary target variable. \r\n        - `target_value`: Value indicating event. default: 1.\r\n\r\n        .fit\r\n\r\n        - `df`: DataFrame containing pred_var and target_var.\r\n        - `stop_limit`: Stops WOE based merging of the predictor's classes/levels in case the resulting information value (IV) decreases more than (e.g. 0.05 = 5%) compared to the preceding binning step. stop_limit=0 will skip any WOE based merging. Increasing the stop_limit will simplify the binning solution and may avoid overfitting. Accepted value range: 0 to 0.5. default: 0.1.\r\n        - `q`: number of quantiles when converting continuous variable to categorical. default: 10\r\n\r\n        .transform\r\n\r\n        - `df`: Transform pred_var based on fitted bins\r\n        - `impute`: Boolean indicating whether to impute missing values. default: False\r\n        - `impute_value`: Category level to impute missing values with. default: 'Missing' or 'nan'\r\n\r\n        .fit_transform\r\n\r\n        - `df`: DataFrame containing pred_var and target_var. Transform pred_var based on fitted bins.\r\n\r\n        .test_limit\r\n\r\n        - `df`: DataFrame containing pred_var and target_var to test stop limits at 1%, 2.5%, 5% and 10%.\r\n\r\n        >fit_dict: dictionary containing the matched category levels and fitted bins.\r\n\r\n        >lookup: dictionary containing cutoff values for continuous variable (empty if pred_var is categorical).\r\n\r\n<br>\r\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Credit Scoring - IESEG School of Management",
    "version": "0.23.12",
    "project_urls": {
        "Homepage": "https://github.com/pnborchert"
    },
    "split_keywords": [
        "credit",
        "scoring",
        "ieseg"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "f45f1aea2549175421123f37a37777ed2d28c5592ae1ce04150f3efeb4bda9e4",
                "md5": "3236129cf36818fe20c7010710589faa",
                "sha256": "e5267a48aa9837634558d977c6bd130745e2dcd0c8319eae78a4f478ac673a1d"
            },
            "downloads": -1,
            "filename": "ieseg_credscore-0.23.12.tar.gz",
            "has_sig": false,
            "md5_digest": "3236129cf36818fe20c7010710589faa",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 12198,
            "upload_time": "2023-07-05T09:27:51",
            "upload_time_iso_8601": "2023-07-05T09:27:51.545145Z",
            "url": "https://files.pythonhosted.org/packages/f4/5f/1aea2549175421123f37a37777ed2d28c5592ae1ce04150f3efeb4bda9e4/ieseg_credscore-0.23.12.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-07-05 09:27:51",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "ieseg-credscore"
}
        
Elapsed time: 1.16796s